aboutsummaryrefslogtreecommitdiffstats
path: root/phpBB/includes/libraries/sftp/biginteger.php
blob: d9b90dacb8300372c850d37d718f64d3b3771d18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
<?php
/**
*
* @package sftp
* @version $Id$
* @copyright (c) 2006 phpBB Group
* @license http://opensource.org/licenses/gpl-license.php GNU Public License
*
*/

/**
* @ignore
*/
if (!defined('IN_PHPBB'))
{
	exit;
}

/**
* Code from http://phpseclib.sourceforge.net/
*
* Modified by phpBB Group to meet our coding standards
* and being able to integrate into phpBB
*
* Pure-PHP arbitrary precission integer arithmetic library
*
* Copyright 2007-2009 TerraFrost <terrafrost@php.net>
* Copyright 2009+ phpBB
*
* @package sftp
* @author  TerraFrost <terrafrost@php.net>
*/

/**#@+
 * @access private
 * @see biginteger::_sliding_window()
 */
/**
 * @see biginteger::_montgomery()
 * @see biginteger::_undo_montgomery()
 */
define('MATH_BIGINTEGER_MONTGOMERY', 0);
/**
 * @see biginteger::_barrett()
 */
define('MATH_BIGINTEGER_BARRETT', 1);
/**
 * @see biginteger::_mod2()
 */
define('MATH_BIGINTEGER_POWEROF2', 2);
/**
 * @see biginteger::_remainder()
 */
define('MATH_BIGINTEGER_CLASSIC', 3);
/**
 * @see biginteger::_copy()
 */
define('MATH_BIGINTEGER_NONE', 4);
/**#@-*/

/**#@+
 * @access private
 * @see biginteger::_montgomery()
 * @see biginteger::_barrett()
 */
/**
 * $cache[MATH_BIGINTEGER_VARIABLE] tells us whether or not the cached data is still valid.
 */
define('MATH_BIGINTEGER_VARIABLE', 0);
/**
 * $cache[MATH_BIGINTEGER_DATA] contains the cached data.
 */
define('MATH_BIGINTEGER_DATA', 1);
/**#@-*/

/**#@+
 * @access private
 * @see biginteger::biginteger()
 */
/**
 * To use the pure-PHP implementation
 */
define('MATH_BIGINTEGER_MODE_INTERNAL', 1);
/**
 * To use the BCMath library
 *
 * (if enabled; otherwise, the internal implementation will be used)
 */
define('MATH_BIGINTEGER_MODE_BCMATH', 2);
/**
 * To use the GMP library
 *
 * (if present; otherwise, either the BCMath or the internal implementation will be used)
 */
define('MATH_BIGINTEGER_MODE_GMP', 3);
/**#@-*/

/**
 * Pure-PHP arbitrary precision integer arithmetic library. Supports base-2, base-10, base-16, and base-256
 * numbers.
 *
 * @author  Jim Wigginton <terrafrost@php.net>
 * @version 1.0.0RC3
 * @access  public
 * @package biginteger
 */
class biginteger
{
	/**
	 * Holds the BigInteger's value.
	 *
	 * @var Array
	 * @access private
	 */
	var $value;

	/**
	 * Holds the BigInteger's magnitude.
	 *
	 * @var Boolean
	 * @access private
	 */
	var $is_negative = false;

	/**
	 * Converts base-2, base-10, base-16, and binary strings (eg. base-256) to BigIntegers.
	 *
	 * If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using
	 * two's compliment.  The sole exception to this is -10, which is treated the same as 10 is.
	 *
	 * @param optional $x base-10 number or base-$base number if $base set.
	 * @param optional integer $base
	 * @return biginteger
	 * @access public
	 */
	function __construct($x = 0, $base = 10)
	{
		if ( !defined('MATH_BIGINTEGER_MODE') )
		{
			switch (true)
			{
				case extension_loaded('gmp'):
					define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_GMP);
					break;
				case extension_loaded('bcmath'):
					define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_BCMATH);
					break;
				default:
					define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_INTERNAL);
			}
		}

		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				$this->value = gmp_init(0);
				break;
			case MATH_BIGINTEGER_MODE_BCMATH:
				$this->value = '0';
				break;
			default:
				$this->value = array();
		}

		if ($x === 0)
		{
			return;
		}

		switch ($base)
		{
			case -256:
				if (ord($x[0]) & 0x80)
				{
					$x = ~$x;
					$this->is_negative = true;
				}
			case  256:
				switch ( MATH_BIGINTEGER_MODE )
				{
					case MATH_BIGINTEGER_MODE_GMP:
						$temp = unpack('H*hex', $x);
						$sign = $this->is_negative ? '-' : '';
						$this->value = gmp_init($sign . '0x' . $temp['hex']);
						break;
					case MATH_BIGINTEGER_MODE_BCMATH:
						// round $len to the nearest 4 (thanks, DavidMJ!)
						$len = (strlen($x) + 3) & 0xFFFFFFFC;

						$x = str_pad($x, $len, chr(0), STR_PAD_LEFT);

						for ($i = 0; $i < $len; $i+= 4) {
							$this->value = bcmul($this->value, '4294967296'); // 4294967296 == 2**32
							$this->value = bcadd($this->value, 0x1000000 * ord($x[$i]) + ((ord($x[$i + 1]) << 16) | (ord($x[$i + 2]) << 8) | ord($x[$i + 3])));
						}

						if ($this->is_negative) {
							$this->value = '-' . $this->value;
						}

						break;
					// converts a base-2**8 (big endian / msb) number to base-2**26 (little endian / lsb)
					case MATH_BIGINTEGER_MODE_INTERNAL:
						while (strlen($x))
						{
							$this->value[] = $this->_bytes2int($this->_base256_rshift($x, 26));
						}
				}

				if ($this->is_negative)
				{
					if (MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_INTERNAL)
					{
						$this->is_negative = false;
					}
					$temp = $this->add(new biginteger('-1'));
					$this->value = $temp->value;
				}
				break;
			case  16:
			case -16:
				if ($base > 0 && $x[0] == '-')
				{
					$this->is_negative = true;
					$x = substr($x, 1);
				}

				$x = preg_replace('#^(?:0x)?([A-Fa-f0-9]*).*#', '$1', $x);

				$is_negative = false;
				if ($base < 0 && hexdec($x[0]) >= 8)
				{
					$this->is_negative = $is_negative = true;
					$x = bin2hex(~pack('H*', $x));
				}

				switch ( MATH_BIGINTEGER_MODE )
				{
					case MATH_BIGINTEGER_MODE_GMP:
						$temp = $this->is_negative ? '-0x' . $x : '0x' . $x;
						$this->value = gmp_init($temp);
						$this->is_negative = false;
						break;
					case MATH_BIGINTEGER_MODE_BCMATH:
						$x = ( strlen($x) & 1 ) ? '0' . $x : $x;
						$temp = new biginteger(pack('H*', $x), 256);
						$this->value = $this->is_negative ? '-' . $temp->value : $temp->value;
						$this->is_negative = false;
						break;
					case MATH_BIGINTEGER_MODE_INTERNAL:
						$x = ( strlen($x) & 1 ) ? '0' . $x : $x;
						$temp = new biginteger(pack('H*', $x), 256);
						$this->value = $temp->value;
				}

				if ($is_negative)
				{
					$temp = $this->add(new biginteger('-1'));
					$this->value = $temp->value;
				}
				break;
			case  10:
			case -10:
				$x = preg_replace('#^(-?[0-9]*).*#', '$1', $x);

				switch ( MATH_BIGINTEGER_MODE )
				{
					case MATH_BIGINTEGER_MODE_GMP:
						$this->value = gmp_init($x);
						break;
					case MATH_BIGINTEGER_MODE_BCMATH:
						// explicitly casting $x to a string is necessary, here, since doing $x[0] on -1 yields different
						// results then doing it on '-1' does (modInverse does $x[0])
						$this->value = (string) $x;
						break;
					case MATH_BIGINTEGER_MODE_INTERNAL:
						$temp = new biginteger();

						// array(10000000) is 10**7 in base-2**26.  10**7 is the closest to 2**26 we can get without passing it.
						$multiplier = new biginteger();
						$multiplier->value = array(10000000);

						if ($x[0] == '-')
						{
							$this->is_negative = true;
							$x = substr($x, 1);
						}

						$x = str_pad($x, strlen($x) + (6 * strlen($x)) % 7, 0, STR_PAD_LEFT);

						while (strlen($x))
						{
							$temp = $temp->multiply($multiplier);
							$temp = $temp->add(new biginteger($this->_int2bytes(substr($x, 0, 7)), 256));
							$x = substr($x, 7);
						}

						$this->value = $temp->value;
				}
				break;
			case  2: // base-2 support originally implemented by Lluis Pamies - thanks!
			case -2:
				if ($base > 0 && $x[0] == '-')
				{
					$this->is_negative = true;
					$x = substr($x, 1);
				}

				$x = preg_replace('#^([01]*).*#', '$1', $x);
				$x = str_pad($x, strlen($x) + (3 * strlen($x)) % 4, 0, STR_PAD_LEFT);

				$str = '0x';
				while (strlen($x))
				{
					$part = substr($x, 0, 4);
					$str.= dechex(bindec($part));
					$x = substr($x, 4);
				}

				if ($this->is_negative)
				{
					$str = '-' . $str;
				}

				$temp = new biginteger($str, 8 * $base); // ie. either -16 or +16
				$this->value = $temp->value;
				$this->is_negative = $temp->is_negative;

				break;
			default:
				// base not supported, so we'll let $this == 0
		}
	}

	/**
	 * Converts a BigInteger to a byte string (eg. base-256).
	 *
	 * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
	 * saved as two's compliment.
	 *
	 * @param Boolean $twos_compliment
	 * @return String
	 * @access public
	 * @internal Converts a base-2**26 number to base-2**8
	 */
	function to_bytes($twos_compliment = false)
	{
		if ($twos_compliment)
		{
			$comparison = $this->compare(new biginteger());
			if ($comparison == 0)
			{
				return '';
			}

			$temp = $comparison < 0 ? $this->add(new biginteger(1)) : $this->_copy();
			$bytes = $temp->to_bytes();

			if (empty($bytes)) // eg. if the number we're trying to convert is -1
			{
				$bytes = chr(0);
			}

			if (ord($bytes[0]) & 0x80)
			{
				$bytes = chr(0) . $bytes;
			}

			return $comparison < 0 ? ~$bytes : $bytes;
		}

		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				if (gmp_cmp($this->value, gmp_init(0)) == 0)
				{
					return '';
				}

				$temp = gmp_strval(gmp_abs($this->value), 16);
				$temp = ( strlen($temp) & 1 ) ? '0' . $temp : $temp;

				return ltrim(pack('H*', $temp), chr(0));
			case MATH_BIGINTEGER_MODE_BCMATH:
				if ($this->value === '0')
				{
					return '';
				}

				$value = '';
				$current = $this->value;

				if ($current[0] == '-')
				{
					$current = substr($current, 1);
				}

				// we don't do four bytes at a time because then numbers larger than 1<<31 would be negative
				// two's complimented numbers, which would break chr.
				while (bccomp($current, '0') > 0)
				{
					$temp = bcmod($current, 0x1000000);
					$value = chr($temp >> 16) . chr($temp >> 8) . chr($temp) . $value;
					$current = bcdiv($current, 0x1000000);
				}

				return ltrim($value, chr(0));
		}

		if (!count($this->value))
		{
			return '';
		}

		$result = $this->_int2bytes($this->value[count($this->value) - 1]);

		$temp = $this->_copy();

		for ($i = count($temp->value) - 2; $i >= 0; $i--)
		{
			$temp->_base256_lshift($result, 26);
			$result = $result | str_pad($temp->_int2bytes($temp->value[$i]), strlen($result), chr(0), STR_PAD_LEFT);
		}

		return $result;
	}

	/**
	 * Converts a BigInteger to a base-10 number.
	 *
	 * @return String
	 * @access public
	 * @internal Converts a base-2**26 number to base-10**7 (which is pretty much base-10)
	 */
	function to_string()
	{
		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				return gmp_strval($this->value);
			case MATH_BIGINTEGER_MODE_BCMATH:
				if ($this->value === '0')
				{
					return '0';
				}

				return ltrim($this->value, '0');
		}

		if (!count($this->value))
		{
			return '0';
		}

		$temp = $this->_copy();
		$temp->is_negative = false;

		$divisor = new biginteger();
		$divisor->value = array(10000000); // eg. 10**7
		while (count($temp->value))
		{
			list($temp, $mod) = $temp->divide($divisor);
			$result = str_pad($this->_bytes2int($mod->to_bytes()), 7, '0', STR_PAD_LEFT) . $result;
		}
		$result = ltrim($result, '0');

		if ($this->is_negative)
		{
			$result = '-' . $result;
		}

		return $result;
	}

	/**
	 *  __toString() magic method
	 *
	 * Will be called, automatically, if you're supporting just PHP5.  If you're supporting PHP4, you'll need to call
	 * toString().
	 *
	 * @access public
	 * @internal Implemented per a suggestion by Techie-Michael - thanks!
	 */
	function __toString()
	{
		return $this->to_string();
	}

	/**
	 * Adds two BigIntegers.
	 *
	 * @param biginteger $y
	 * @return biginteger
	 * @access public
	 * @internal Performs base-2**52 addition
	 */
	function add($y)
	{
		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				$temp = new biginteger();
				$temp->value = gmp_add($this->value, $y->value);

				return $temp;
			case MATH_BIGINTEGER_MODE_BCMATH:
				$temp = new biginteger();
				$temp->value = bcadd($this->value, $y->value);

				return $temp;
		}

		// subtract, if appropriate
		if ( $this->is_negative != $y->is_negative )
		{
			// is $y the negative number?
			$y_negative = $this->compare($y) > 0;

			$temp = $this->_copy();
			$y = $y->_copy();
			$temp->is_negative = $y->is_negative = false;

			$diff = $temp->compare($y);
			if ( !$diff )
			{
				return new biginteger();
			}

			$temp = $temp->subtract($y);

			$temp->is_negative = ($diff > 0) ? !$y_negative : $y_negative;

			return $temp;
		}

		$result = new biginteger();
		$carry = 0;

		$size = max(count($this->value), count($y->value));
		$size+= $size & 1; // rounds $size to the nearest 2.

		$x = array_pad($this->value, $size,0);
		$y = array_pad($y->value, $size, 0);

		for ($i = 0; $i < $size - 1; $i+=2)
		{
			$sum = $x[$i + 1] * 0x4000000 + $x[$i] + $y[$i + 1] * 0x4000000 + $y[$i] + $carry;
			$carry = $sum >= 4503599627370496; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1
			$sum = $carry ? $sum - 4503599627370496 : $sum;

			$temp = floor($sum / 0x4000000);

			$result->value[] = $sum - 0x4000000 * $temp; // eg. a faster alternative to fmod($sum, 0x4000000)
			$result->value[] = $temp;
		}

		if ($carry)
		{
			$result->value[] = $carry;
		}

		$result->is_negative = $this->is_negative;

		return $result->_normalize();
	}

	/**
	 * Subtracts two BigIntegers.
	 *
	 * @param biginteger $y
	 * @return biginteger
	 * @access public
	 * @internal Performs base-2**52 subtraction
	 */
	function subtract($y)
	{
		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				$temp = new biginteger();
				$temp->value = gmp_sub($this->value, $y->value);

				return $temp;
			case MATH_BIGINTEGER_MODE_BCMATH:
				$temp = new biginteger();
				$temp->value = bcsub($this->value, $y->value);

				return $temp;
		}

		// add, if appropriate
		if ( $this->is_negative != $y->is_negative )
		{
			$is_negative = $y->compare($this) > 0;

			$temp = $this->_copy();
			$y = $y->_copy();
			$temp->is_negative = $y->is_negative = false;

			$temp = $temp->add($y);

			$temp->is_negative = $is_negative;

			return $temp;
		}

		$diff = $this->compare($y);

		if ( !$diff )
		{
			return new biginteger();
		}

		// switch $this and $y around, if appropriate.
		if ( (!$this->is_negative && $diff < 0) || ($this->is_negative && $diff > 0) )
		{
			$is_negative = $y->is_negative;

			$temp = $this->_copy();
			$y = $y->_copy();
			$temp->is_negative = $y->is_negative = false;

			$temp = $y->subtract($temp);
			$temp->is_negative = !$is_negative;

			return $temp;
		}

		$result = new biginteger();
		$carry = 0;

		$size = max(count($this->value), count($y->value));
		$size+= $size % 2;

		$x = array_pad($this->value, $size, 0);
		$y = array_pad($y->value, $size, 0);

		for ($i = 0; $i < $size - 1; $i+=2)
		{
			$sum = $x[$i + 1] * 0x4000000 + $x[$i] - $y[$i + 1] * 0x4000000 - $y[$i] + $carry;
			$carry = $sum < 0 ? -1 : 0; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1
			$sum = $carry ? $sum + 4503599627370496 : $sum;

			$temp = floor($sum / 0x4000000);

			$result->value[] = $sum - 0x4000000 * $temp;
			$result->value[] = $temp;
		}

		// $carry shouldn't be anything other than zero, at this point, since we already made sure that $this
		// was bigger than $y.

		$result->is_negative = $this->is_negative;

		return $result->_normalize();
	}

	/**
	 * Multiplies two BigIntegers
	 *
	 * @param biginteger $x
	 * @return biginteger
	 * @access public
	 * @internal Modeled after 'multiply' in MutableBigInteger.java.
	 */
	function multiply($x)
	{
		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				$temp = new biginteger();
				$temp->value = gmp_mul($this->value, $x->value);

				return $temp;
			case MATH_BIGINTEGER_MODE_BCMATH:
				$temp = new biginteger();
				$temp->value = bcmul($this->value, $x->value);

				return $temp;
		}

		if ( !$this->compare($x) )
		{
			return $this->_square();
		}

		$this_length = count($this->value);
		$x_length = count($x->value);

		if ( !$this_length || !$x_length ) // a 0 is being multiplied
		{
			return new biginteger();
		}

		$product = new biginteger();
		$product->value = $this->_array_repeat(0, $this_length + $x_length);

		// the following for loop could be removed if the for loop following it
		// (the one with nested for loops) initially set $i to 0, but
		// doing so would also make the result in one set of unnecessary adds,
		// since on the outermost loops first pass, $product->value[$k] is going
		// to always be 0

		$carry = 0;
		$i = 0;

		for ($j = 0, $k = $i; $j < $this_length; $j++, $k++)
		{
			$temp = $product->value[$k] + $this->value[$j] * $x->value[$i] + $carry;
			$carry = floor($temp / 0x4000000);
			$product->value[$k] = $temp - 0x4000000 * $carry;
		}

		$product->value[$k] = $carry;

		// the above for loop is what the previous comment was talking about.  the
		// following for loop is the "one with nested for loops"

		for ($i = 1; $i < $x_length; $i++)
		{
			$carry = 0;

			for ($j = 0, $k = $i; $j < $this_length; $j++, $k++)
			{
				$temp = $product->value[$k] + $this->value[$j] * $x->value[$i] + $carry;
				$carry = floor($temp / 0x4000000);
				$product->value[$k] = $temp - 0x4000000 * $carry;
			}

			$product->value[$k] = $carry;
		}

		$product->is_negative = $this->is_negative != $x->is_negative;

		return $product->_normalize();
	}

	/**
	 * Squares a BigInteger
	 *
	 * Squaring can be done faster than multiplying a number by itself can be.  See
	 * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=7 HAC 14.2.4} /
	 * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=141 MPM 5.3} for more information.
	 *
	 * @return biginteger
	 * @access private
	 */
	function _square()
	{
		if ( empty($this->value) )
		{
			return new biginteger();
		}

		$max_index = count($this->value) - 1;

		$square = new biginteger();
		$square->value = $this->_array_repeat(0, 2 * $max_index);

		for ($i = 0; $i <= $max_index; $i++)
		{
			$temp = $square->value[2 * $i] + $this->value[$i] * $this->value[$i];
			$carry = floor($temp / 0x4000000);
			$square->value[2 * $i] = $temp - 0x4000000 * $carry;

			// note how we start from $i+1 instead of 0 as we do in multiplication.
			for ($j = $i + 1; $j <= $max_index; $j++)
			{
				$temp = $square->value[$i + $j] + 2 * $this->value[$j] * $this->value[$i] + $carry;
				$carry = floor($temp / 0x4000000);
				$square->value[$i + $j] = $temp - 0x4000000 * $carry;
			}

			// the following line can yield values larger 2**15.  at this point, PHP should switch
			// over to floats.
			$square->value[$i + $max_index + 1] = $carry;
		}

		return $square->_normalize();
	}

	/**
	 * Divides two BigIntegers.
	 *
	 * Returns an array whose first element contains the quotient and whose second element contains the
	 * "common residue".  If the remainder would be positive, the "common residue" and the remainder are the
	 * same.  If the remainder would be negative, the "common residue" is equal to the sum of the remainder
	 * and the divisor (basically, the "common residue" is the first positive modulo).
	 *
	 * @param biginteger $y
	 * @return Array
	 * @access public
	 * @internal This function is based off of {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=9 HAC 14.20}
	 *	with a slight variation due to the fact that this script, initially, did not support negative numbers.  Now,
	 *	it does, but I don't want to change that which already works.
	 */
	function divide($y)
	{
		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				$quotient = new biginteger();
				$remainder = new biginteger();

				list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value);

				if (gmp_sign($remainder->value) < 0)
				{
					$remainder->value = gmp_add($remainder->value, gmp_abs($y->value));
				}

				return array($quotient, $remainder);
			case MATH_BIGINTEGER_MODE_BCMATH:
				$quotient = new biginteger();
				$remainder = new biginteger();

				$quotient->value = bcdiv($this->value, $y->value);
				$remainder->value = bcmod($this->value, $y->value);

				if ($remainder->value[0] == '-')
				{
					$remainder->value = bcadd($remainder->value, $y->value[0] == '-' ? substr($y->value, 1) : $y->value);
				}

				return array($quotient, $remainder);
		}

		$x = $this->_copy();
		$y = $y->_copy();

		$x_sign = $x->is_negative;
		$y_sign = $y->is_negative;

		$x->is_negative = $y->is_negative = false;

		$diff = $x->compare($y);

		if ( !$diff )
		{
			$temp = new biginteger();
			$temp->value = array(1);
			$temp->is_negative = $x_sign != $y_sign;
			return array($temp, new biginteger());
		}

		if ( $diff < 0 )
		{
			// if $x is negative, "add" $y.
			if ( $x_sign )
			{
				$x = $y->subtract($x);
			}
			return array(new biginteger(), $x);
		}

		// normalize $x and $y as described in HAC 14.23 / 14.24
		// (incidently, i haven't been able to find a definitive example showing that this
		// results in worth-while speedup, but whatever)
		$msb = $y->value[count($y->value) - 1];
		for ($shift = 0; !($msb & 0x2000000); $shift++)
		{
			$msb <<= 1;
		}
		$x->_lshift($shift);
		$y->_lshift($shift);

		$x_max = count($x->value) - 1;
		$y_max = count($y->value) - 1;

		$quotient = new biginteger();
		$quotient->value = $this->_array_repeat(0, $x_max - $y_max + 1);

		// $temp = $y << ($x_max - $y_max-1) in base 2**26
		$temp = new biginteger();
		$temp->value = array_merge($this->_array_repeat(0, $x_max - $y_max), $y->value);

		while ( $x->compare($temp) >= 0 )
		{
			// calculate the "common residue"
			$quotient->value[$x_max - $y_max]++;
			$x = $x->subtract($temp);
			$x_max = count($x->value) - 1;
		}

		for ($i = $x_max; $i >= $y_max + 1; $i--)
		{
			$x_value = array(
				$x->value[$i],
				( $i > 0 ) ? $x->value[$i - 1] : 0,
				( $i - 1 > 0 ) ? $x->value[$i - 2] : 0
			);
			$y_value = array(
				$y->value[$y_max],
				( $y_max > 0 ) ? $y_max - 1 : 0
			);


			$q_index = $i - $y_max - 1;
			if ($x_value[0] == $y_value[0])
			{
				$quotient->value[$q_index] = 0x3FFFFFF;
			}
			else
			{
				$quotient->value[$q_index] = floor(
					($x_value[0] * 0x4000000 + $x_value[1])
					/
					$y_value[0]
				);
			}

			$temp = new biginteger();
			$temp->value = array($y_value[1], $y_value[0]);

			$lhs = new biginteger();
			$lhs->value = array($quotient->value[$q_index]);
			$lhs = $lhs->multiply($temp);

			$rhs = new biginteger();
			$rhs->value = array($x_value[2], $x_value[1], $x_value[0]);
			
			while ( $lhs->compare($rhs) > 0 )
			{
				$quotient->value[$q_index]--;

				$lhs = new biginteger();
				$lhs->value = array($quotient->value[$q_index]);
				$lhs = $lhs->multiply($temp);
			}

			$corrector = new biginteger();
			$temp = new biginteger();
			$corrector->value = $temp->value = $this->_array_repeat(0, $q_index);
			$temp->value[] = $quotient->value[$q_index];

			$temp = $temp->multiply($y);

			if ( $x->compare($temp) < 0 )
			{
				$corrector->value[] = 1;
				$x = $x->add($corrector->multiply($y));
				$quotient->value[$q_index]--;
			}

			$x = $x->subtract($temp);
			$x_max = count($x->value) - 1;
		}

		// unnormalize the remainder
		$x->_rshift($shift);

		$quotient->is_negative = $x_sign != $y_sign;

		// calculate the "common residue", if appropriate
		if ( $x_sign )
		{
			$y->_rshift($shift);
			$x = $y->subtract($x);
		}

		return array($quotient->_normalize(), $x);
	}

	/**
	 * Performs modular exponentiation.
	 *
	 * @param biginteger $e
	 * @param biginteger $n
	 * @return biginteger
	 * @access public
	 * @internal The most naive approach to modular exponentiation has very unreasonable requirements, and
	 *	and although the approach involving repeated squaring does vastly better, it, too, is impractical
	 *	for our purposes.  The reason being that division - by far the most complicated and time-consuming
	 *	of the basic operations (eg. +,-,*,/) - occurs multiple times within it.
	 *
	 *	Modular reductions resolve this issue.  Although an individual modular reduction takes more time
	 *	then an individual division, when performed in succession (with the same modulo), they're a lot faster.
	 *
	 *	The two most commonly used modular reductions are Barrett and Montgomery reduction.  Montgomery reduction,
	 *	although faster, only works when the gcd of the modulo and of the base being used is 1.  In RSA, when the
	 *	base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because
	 *	the product of two odd numbers is odd), but what about when RSA isn't used?
	 *
	 *	In contrast, Barrett reduction has no such constraint.  As such, some bigint implementations perform a
	 *	Barrett reduction after every operation in the modpow function.  Others perform Barrett reductions when the
	 *	modulo is even and Montgomery reductions when the modulo is odd.  BigInteger.java's modPow method, however,
	 *	uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and
	 *	the other, a power of two - and recombine them, later.  This is the method that this modPow function uses.
	 *	{@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates.
	 */
	function mod_pow($e, $n)
	{
		$n = $n->abs();
		if ($e->compare(new biginteger()) < 0)
		{
			$e = $e->abs();

			$temp = $this->modInverse($n);
			if ($temp === false)
			{
				return false;
			}

			return $temp->modPow($e, $n);
		}

		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				$temp = new biginteger();
				$temp->value = gmp_powm($this->value, $e->value, $n->value);

				return $temp;
			case MATH_BIGINTEGER_MODE_BCMATH:
				$temp = new biginteger();
				$temp->value = bcpowmod($this->value, $e->value, $n->value);

				return $temp;
		}

		if ( empty($e->value) )
		{
			$temp = new biginteger();
			$temp->value = array(1);
			return $temp;
		}

		if ( $e->value == array(1) )
		{
			list(, $temp) = $this->divide($n);
			return $temp;
		}

		if ( $e->value == array(2) )
		{
			$temp = $this->_square();
			list(, $temp) = $temp->divide($n);
			return $temp;
		}

		// is the modulo odd?
		if ( $n->value[0] & 1 )
		{
			return $this->_slidingWindow($e, $n, MATH_BIGINTEGER_MONTGOMERY);
		}
		// if it's not, it's even

		// find the lowest set bit (eg. the max pow of 2 that divides $n)
		for ($i = 0; $i < count($n->value); $i++)
		{
			if ( $n->value[$i] )
			{
				$temp = decbin($n->value[$i]);
				$j = strlen($temp) - strrpos($temp, '1') - 1;
				$j+= 26 * $i;
				break;
			}
		}
		// at this point, 2^$j * $n/(2^$j) == $n

		$mod1 = $n->_copy();
		$mod1->_rshift($j);
		$mod2 = new biginteger();
		$mod2->value = array(1);
		$mod2->_lshift($j);

		$part1 = ( $mod1->value != array(1) ) ? $this->_slidingWindow($e, $mod1, MATH_BIGINTEGER_MONTGOMERY) : new biginteger();
		$part2 = $this->_sliding_window($e, $mod2, MATH_BIGINTEGER_POWEROF2);

		$y1 = $mod2->mod_inverse($mod1);
		$y2 = $mod1->mod_inverse($mod2);

		$result = $part1->multiply($mod2);
		$result = $result->multiply($y1);

		$temp = $part2->multiply($mod1);
		$temp = $temp->multiply($y2);

		$result = $result->add($temp);
		list(, $result) = $result->divide($n);

		return $result;
	}

	/**
	 * Sliding Window k-ary Modular Exponentiation
	 *
	 * Based on {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=27 HAC 14.85} /
	 * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=210 MPM 7.7}.  In a departure from those algorithims,
	 * however, this function performs a modular reduction after every multiplication and squaring operation.
	 * As such, this function has the same preconditions that the reductions being used do.
	 *
	 * @param biginteger $e
	 * @param biginteger $n
	 * @param Integer $mode
	 * @return biginteger
	 * @access private
	 */
	function _sliding_window($e, $n, $mode)
	{
		static $window_ranges = array(7, 25, 81, 241, 673, 1793); // from BigInteger.java's oddModPow function
		//static $window_ranges = array(0, 7, 36, 140, 450, 1303, 3529); // from MPM 7.3.1

		$e_length = count($e->value) - 1;
		$e_bits = decbin($e->value[$e_length]);
		for ($i = $e_length - 1; $i >= 0; $i--)
		{
			$e_bits.= str_pad(decbin($e->value[$i]), 26, '0', STR_PAD_LEFT);
		}
		$e_length = strlen($e_bits);

		// calculate the appropriate window size.
		// $window_size == 3 if $window_ranges is between 25 and 81, for example.
		for ($i = 0, $window_size = 1; $e_length > $window_ranges[$i] && $i < count($window_ranges); $window_size++, $i++);

		switch ($mode)
		{
			case MATH_BIGINTEGER_MONTGOMERY:
				$reduce = '_montgomery';
				$undo = '_undo_montgomery';
				break;
			case MATH_BIGINTEGER_BARRETT:
				$reduce = '_barrett';
				$undo = '_barrett';
				break;
			case MATH_BIGINTEGER_POWEROF2:
				$reduce = '_mod2';
				$undo = '_mod2';
				break;
			case MATH_BIGINTEGER_CLASSIC:
				$reduce = '_remainder';
				$undo = '_remainder';
				break;
			case MATH_BIGINTEGER_NONE:
				// ie. do no modular reduction.  useful if you want to just do pow as opposed to modPow.
				$reduce = '_copy';
				$undo = '_copy';
				break;
			default:
				// an invalid $mode was provided
		}

		// precompute $this^0 through $this^$window_size
		$powers = array();
		$powers[1] = $this->$undo($n);
		$powers[2] = $powers[1]->_square();
		$powers[2] = $powers[2]->$reduce($n);

		// we do every other number since substr($e_bits, $i, $j+1) (see below) is supposed to end
		// in a 1.  ie. it's supposed to be odd.
		$temp = 1 << ($window_size - 1);
		for ($i = 1; $i < $temp; $i++)
		{
			$powers[2 * $i + 1] = $powers[2 * $i - 1]->multiply($powers[2]);
			$powers[2 * $i + 1] = $powers[2 * $i + 1]->$reduce($n);
		}

		$result = new biginteger();
		$result->value = array(1);
		$result = $result->$undo($n);

		for ($i = 0; $i < $e_length; )
		{
			if ( !$e_bits[$i] )
			{
				$result = $result->_square();
				$result = $result->$reduce($n);
				$i++;
			}
			else
			{
				for ($j = $window_size - 1; $j >= 0; $j--)
				{
					if ( $e_bits[$i + $j] )
					{
						break;
					}
				}

				for ($k = 0; $k <= $j; $k++) // eg. the length of substr($e_bits, $i, $j+1)
				{
					$result = $result->_square();
					$result = $result->$reduce($n);
				}

				$result = $result->multiply($powers[bindec(substr($e_bits, $i, $j + 1))]);
				$result = $result->$reduce($n);

				$i+=$j + 1;
			}
		}

		$result = $result->$reduce($n);
		return $result->_normalize();
	}

	/**
	 * Remainder
	 *
	 * A wrapper for the divide function.
	 *
	 * @see divide()
	 * @see _slidingWindow()
	 * @access private
	 * @param biginteger
	 * @return biginteger
	 */
	function _remainder($n)
	{
		list(, $temp) = $this->divide($n);
		return $temp;
	}

	/**
	 * Modulos for Powers of Two
	 *
	 * Calculates $x%$n, where $n = 2**$e, for some $e.  Since this is basically the same as doing $x & ($n-1),
	 * we'll just use this function as a wrapper for doing that.
	 *
	 * @see _slidingWindow()
	 * @access private
	 * @param biginteger
	 * @return biginteger
	 */
	function _mod2($n)
	{
		$temp = new biginteger();
		$temp->value = array(1);
		return $this->bitwise_and($n->subtract($temp));
	}

	/**
	 * Barrett Modular Reduction
	 *
	 * See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=14 HAC 14.3.3} /
	 * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=165 MPM 6.2.5} for more information.  Modified slightly,
	 * so as not to require negative numbers (initially, this script didn't support negative numbers).
	 *
	 * @see _slidingWindow()
	 * @access private
	 * @param biginteger
	 * @return biginteger
	 */
	function _barrett($n)
	{
		static $cache;

		$n_length = count($n->value);

		if ( !isset($cache[MATH_BIGINTEGER_VARIABLE]) || $n->compare($cache[MATH_BIGINTEGER_VARIABLE]) )
		{
			$cache[MATH_BIGINTEGER_VARIABLE] = $n;
			$temp = new biginteger();
			$temp->value = $this->_array_repeat(0, 2 * $n_length);
			$temp->value[] = 1;
			list($cache[MATH_BIGINTEGER_DATA], ) = $temp->divide($n);
		}

		$temp = new biginteger();
		$temp->value = array_slice($this->value, $n_length - 1);
		$temp = $temp->multiply($cache[MATH_BIGINTEGER_DATA]);
		$temp->value = array_slice($temp->value, $n_length + 1);

		$result = new biginteger();
		$result->value = array_slice($this->value, 0, $n_length + 1);
		$temp = $temp->multiply($n);
		$temp->value = array_slice($temp->value, 0, $n_length + 1);

		if ($result->compare($temp) < 0)
		{
			$corrector = new biginteger();
			$corrector->value = $this->_array_repeat(0, $n_length + 1);
			$corrector->value[] = 1;
			$result = $result->add($corrector);
		}

		$result = $result->subtract($temp);
		while ($result->compare($n) > 0)
		{
			$result = $result->subtract($n);
		}

		return $result;
	}

	/**
	 * Montgomery Modular Reduction
	 *
	 * ($this->_montgomery($n))->_undoMontgomery($n) yields $x%$n.
	 * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=170 MPM 6.3} provides insights on how this can be
	 * improved upon (basically, by using the comba method).  gcd($n, 2) must be equal to one for this function
	 * to work correctly.
	 *
	 * @see _undoMontgomery()
	 * @see _slidingWindow()
	 * @access private
	 * @param biginteger
	 * @return biginteger
	 */
	function _montgomery($n)
	{
		static $cache;

		if ( !isset($cache[MATH_BIGINTEGER_VARIABLE]) || $n->compare($cache[MATH_BIGINTEGER_VARIABLE]) )
		{
			$cache[MATH_BIGINTEGER_VARIABLE] = $n;
			$cache[MATH_BIGINTEGER_DATA] = $n->_mod_inverse67108864();
		}

		$result = $this->_copy();

		$n_length = count($n->value);

		for ($i = 0; $i < $n_length; $i++)
		{
			$temp = new biginteger();
			$temp->value = array(
				($result->value[$i] * $cache[MATH_BIGINTEGER_DATA]) & 0x3FFFFFF
			);
			$temp = $temp->multiply($n);
			$temp->value = array_merge($this->_array_repeat(0, $i), $temp->value);
			$result = $result->add($temp);
		}

		$result->value = array_slice($result->value, $n_length);

		if ($result->compare($n) >= 0)
		{
			$result = $result->subtract($n);
		}

		return $result->_normalize();
	}

	/**
	 * Undo Montgomery Modular Reduction
	 *
	 * @see _montgomery()
	 * @see _slidingWindow()
	 * @access private
	 * @param biginteger
	 * @return biginteger
	 */
	function _undo_montgomery($n)
	{
		$temp = new biginteger();
		$temp->value = array_merge($this->_array_repeat(0, count($n->value)), $this->value);
		list(, $temp) = $temp->divide($n);
		return $temp->_normalize();
	}

	/**
	 * Modular Inverse of a number mod 2**26 (eg. 67108864)
	 *
	 * Based off of the bnpInvDigit function implemented and justified in the following URL:
	 *
	 * {@link http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js}
	 *
	 * The following URL provides more info:
	 *
	 * {@link http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85}
	 *
	 * As for why we do all the bitmasking...  strange things can happen when converting from floats to ints. For
	 * instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields 
	 * int(-2147483648).  To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't
	 * auto-converted to floats.  The outermost bitmask is present because without it, there's no guarantee that
	 * the "residue" returned would be the so-called "common residue".  We use fmod, in the last step, because the
	 * maximum possible $x is 26 bits and the maximum $result is 16 bits.  Thus, we have to be able to handle up to
	 * 40 bits, which only 64-bit floating points will support.
	 *
	 * Thanks to Pedro Gimeno Fortea for input!
	 *
	 * @see _montgomery()
	 * @access private
	 * @return Integer
	 */
	function _mod_inverse67108864() // 2**26 == 67108864
	{
		$x = -$this->value[0];
		$result = $x & 0x3; // x**-1 mod 2**2
		$result = ($result * (2 - $x * $result)) & 0xF; // x**-1 mod 2**4
		$result = ($result * (2 - ($x & 0xFF) * $result))  & 0xFF; // x**-1 mod 2**8
		$result = ($result * ((2 - ($x & 0xFFFF) * $result) & 0xFFFF)) & 0xFFFF; // x**-1 mod 2**16
		$result = fmod($result * (2 - fmod($x * $result, 0x4000000)), 0x4000000); // x**-1 mod 2**26
		return $result & 0x3FFFFFF;
	}

	/**
	 * Calculates modular inverses.
	 *
	 * @param biginteger $n
	 * @return mixed false, if no modular inverse exists, biginteger, otherwise.
	 * @access public
	 * @internal Calculates the modular inverse of $this mod $n using the binary xGCD algorithim described in
	 *	{@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=19 HAC 14.61}.  As the text above 14.61 notes,
	 *	the more traditional algorithim requires "relatively costly multiple-precision divisions".  See
	 *	{@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=21 HAC 14.64} for more information.
	 */
	function mod_inverse($n)
	{
		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				$temp = new biginteger();
				$temp->value = gmp_invert($this->value, $n->value);

				return ( $temp->value === false ) ? false : $temp;
			case MATH_BIGINTEGER_MODE_BCMATH:
				// it might be faster to use the binary xGCD algorithim here, as well, but (1) that algorithim works
				// best when the base is a power of 2 and (2) i don't think it'd make much difference, anyway.  as is,
				// the basic extended euclidean algorithim is what we're using.

				// if $x is less than 0, the first character of $x is a '-', so we'll remove it.  we can do this because
				// $x mod $n == $x mod -$n.
				$n = (bccomp($n->value, '0') < 0) ? substr($n->value, 1) : $n->value;

				if (bccomp($this->value,'0') < 0)
				{
					$negated_this = new biginteger();
					$negated_this->value = substr($this->value, 1);

					$temp = $negated_this->mod_inverse(new biginteger($n));

					if ($temp === false)
					{
						return false;
					}

					$temp->value = bcsub($n, $temp->value);

					return $temp;
				}

				$u = $this->value;
				$v = $n;

				$a = '1';
				$c = '0';

				while (true)
				{
					$q = bcdiv($u, $v);
					$temp = $u;
					$u = $v;
					$v = bcsub($temp, bcmul($v, $q));

					if (bccomp($v, '0') == 0) {
						break;
					}

					$temp = $a;
					$a = $c;
					$c = bcsub($temp, bcmul($c, $q));
				}

				$temp = new biginteger();
				$temp->value = (bccomp($c, '0') < 0) ? bcadd($c, $n) : $c;

				// $u contains the gcd of $this and $n
				return (bccomp($u,'1') == 0) ? $temp : false;
		}

		// if $this and $n are even, return false.
		if ( !($this->value[0]&1) && !($n->value[0]&1) )
		{
			return false;
		}

		$n = $n->_copy();
		$n->is_negative = false;

		if ($this->compare(new biginteger()) < 0)
		{
			// is_negative is currently true.  since we need it to be false, we'll just set it to false, temporarily,
			// and reset it as true, later.
			$this->is_negative = false;

			$temp = $this->mod_inverse($n);

			if ($temp === false)
			{
				return false;
			}

			$temp = $n->subtract($temp);

			$this->is_negative = true;

			return $temp;
		}

		$u = $n->_copy();
		$x = $this;
		//list(, $x) = $this->divide($n);
		$v = $x->_copy();

		$a = new biginteger();
		$b = new biginteger();
		$c = new biginteger();
		$d = new biginteger();

		$a->value = $d->value = array(1);

		while ( !empty($u->value) )
		{
			while ( !($u->value[0] & 1) )
			{
				$u->_rshift(1);
				if ( ($a->value[0] & 1) || ($b->value[0] & 1) )
				{
					$a = $a->add($x);
					$b = $b->subtract($n);
				}
				$a->_rshift(1);
				$b->_rshift(1);
			}

			while ( !($v->value[0] & 1) )
			{
				$v->_rshift(1);
				if ( ($c->value[0] & 1) || ($d->value[0] & 1) )
				{
					$c = $c->add($x);
					$d = $d->subtract($n);
				}
				$c->_rshift(1);
				$d->_rshift(1);
			}

			if ($u->compare($v) >= 0)
			{
				$u = $u->subtract($v);
				$a = $a->subtract($c);
				$b = $b->subtract($d);
			}
			else
			{
				$v = $v->subtract($u);
				$c = $c->subtract($a);
				$d = $d->subtract($b);
			}

			$u->_normalize();
		}

		// at this point, $v == gcd($this, $n).  if it's not equal to 1, no modular inverse exists.
		if ( $v->value != array(1) )
		{
			return false;
		}

		$d = ($d->compare(new biginteger()) < 0) ? $d->add($n) : $d;

		return ($this->is_negative) ? $n->subtract($d) : $d;
	}

	/**
	 * Absolute value.
	 *
	 * @return biginteger
	 * @access public
	 */
	function abs()
	{
		$temp = new biginteger();

		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				$temp->value = gmp_abs($this->value);
				break;
			case MATH_BIGINTEGER_MODE_BCMATH:
				$temp->value = (bccomp($this->value, '0') < 0) ? substr($this->value, 1) : $this->value;
				break;
			default:
				$temp->value = $this->value;
		}

		return $temp;
	}

	/**
	 * Compares two numbers.
	 *
	 * @param biginteger $x
	 * @return Integer < 0 if $this is less than $x; > 0 if $this is greater than $x, and 0 if they are equal.
	 * @access public
	 * @internal Could return $this->sub($x), but that's not as fast as what we do do.
	 */
	function compare($x)
	{
		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				return gmp_cmp($this->value, $x->value);
			case MATH_BIGINTEGER_MODE_BCMATH:
				return bccomp($this->value, $x->value);
		}

		$this->_normalize();
		$x->_normalize();

		if ( $this->is_negative != $x->is_negative )
		{
			return ( !$this->is_negative && $x->is_negative ) ? 1 : -1;
		}

		$result = $this->is_negative ? -1 : 1;

		if ( count($this->value) != count($x->value) )
		{
			return ( count($this->value) > count($x->value) ) ? $result : -$result;
		}

		for ($i = count($this->value) - 1; $i >= 0; $i--)
		{
			if ($this->value[$i] != $x->value[$i])
			{
				return ( $this->value[$i] > $x->value[$i] ) ? $result : -$result;
			}
		}

		return 0;
	}

	/**
	 * Returns a copy of $this
	 *
	 * PHP5 passes objects by reference while PHP4 passes by value.  As such, we need a function to guarantee
	 * that all objects are passed by value, when appropriate.  More information can be found here:
	 *
	 * {@link http://www.php.net/manual/en/language.oop5.basic.php#51624}
	 *
	 * @access private
	 * @return biginteger
	 */
	function _copy()
	{
		$temp = new biginteger();
		$temp->value = $this->value;
		$temp->is_negative = $this->is_negative;
		return $temp;
	}

	/**
	 * Logical And
	 *
	 * @param biginteger $x
	 * @access public
	 * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
	 * @return biginteger
	 */
	function bitwise_and($x)
	{
		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				$temp = new biginteger();
				$temp->value = gmp_and($this->value, $x->value);

				return $temp;
			case MATH_BIGINTEGER_MODE_BCMATH:
				return new biginteger($this->to_bytes() & $x->to_bytes(), 256);
		}

		$result = new biginteger();

		$x_length = count($x->value);
		for ($i = 0; $i < $x_length; $i++)
		{
			$result->value[] = $this->value[$i] & $x->value[$i];
		}

		return $result->_normalize();
	}

	/**
	 * Logical Or
	 *
	 * @param biginteger $x
	 * @access public
	 * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
	 * @return biginteger
	 */
	function bitwise_or($x)
	{
		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				$temp = new biginteger();
				$temp->value = gmp_or($this->value, $x->value);

				return $temp;
			case MATH_BIGINTEGER_MODE_BCMATH:
				return new biginteger($this->to_bytes() | $x->to_bytes(), 256);
		}

		$result = $this->_copy();

		$x_length = count($x->value);
		for ($i = 0; $i < $x_length; $i++)
		{
			$result->value[$i] = $this->value[$i] | $x->value[$i];
		}

		return $result->_normalize();
	}

	/**
	 * Logical Exclusive-Or
	 *
	 * @param biginteger $x
	 * @access public
	 * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
	 * @return biginteger
	 */
	function bitwise_xor($x)
	{
		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				$temp = new biginteger();
				$temp->value = gmp_xor($this->value, $x->value);

				return $temp;
			case MATH_BIGINTEGER_MODE_BCMATH:
				return new biginteger($this->to_bytes() ^ $x->to_bytes(), 256);
		}

		$result = $this->_copy();

		$x_length = count($x->value);
		for ($i = 0; $i < $x_length; $i++)
		{
			$result->value[$i] = $this->value[$i] ^ $x->value[$i];
		}

		return $result->_normalize();
	}

	/**
	 * Logical Not
	 *
	 * Although integers can be converted to and from various bases with relative ease, there is one piece
	 * of information that is lost during such conversions.  The number of leading zeros that number had
	 * or should have in any given base.  Per that, if you convert 1 from decimal to binary, there's no
	 * way to know just how many leading zero's there should be.  In truth, there could be any number.
	 *
	 * Normally, the number of leading zero's is unimportant.  When doing "not", however, it is.  The "not"
	 * of 1 on an 8-bit representation of 1 is 1111 1110.  The "not" of 1 on a 16-bit representation of 1 is
	 * 1111 1111 1111 1110.  When doing it on a number that's preceeded by an infinite number of zero's, it's
	 * infinite.
	 *
	 * This function assumes that there are no leading zero's - that the bit-representation being used is
	 * equal to the minimum number of required bits, unless otherwise specified in the optional parameter,
	 * where the optional parameter represents the bit-representation being used.  If the specified
	 * bit-representation is smaller than the minimum number of bits required to represent the number, the
	 * latter will be used as the bit-representation.
	 *
	 * @param $bits Integer
	 * @access public
	 * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
	 * @return biginteger
	 */
	function bitwise_not($bits = -1)
	{
		// calculuate "not" without regard to $bits
		$temp = ~$this->to_bytes();
		$msb = decbin(ord($temp[0]));
		$msb = substr($msb, strpos($msb, '0'));
		$temp[0] = chr(bindec($msb));

		// see if we need to add extra leading 1's
		$current_bits = strlen($msb) + 8 * strlen($temp) - 8;
		$new_bits = $bits - $current_bits;
		if ($new_bits <= 0)
		{
			return new biginteger($temp, 256);
		}

		// generate as many leading 1's as we need to.
		$leading_ones = chr((1 << ($new_bits & 0x7)) - 1) . str_repeat(chr(0xFF), $new_bits >> 3);
		$this->_base256_lshift($leading_ones, $current_bits);

		$temp = str_pad($temp, ceil($bits / 8), chr(0), STR_PAD_LEFT);

		return new biginteger($leading_ones | $temp, 256);
	}

	/**
	 * Logical Right Shift
	 *
	 * Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift.
	 *
	 * @param Integer $shift
	 * @return biginteger
	 * @access public
	 * @internal The only version that yields any speed increases is the internal version.
	 */
	function bitwise_right_shift($shift)
	{
		$temp = new biginteger();

		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				static $two;

				if (empty($two))
				{
					$two = gmp_init('2');
				}

				$temp->value = gmp_div_q($this->value, gmp_pow($two, $shift));

				break;
			case MATH_BIGINTEGER_MODE_BCMATH:
				$temp->value = bcdiv($this->value, bcpow('2', $shift));

				break;
			default: // could just replace _lshift with this, but then all _lshift() calls would need to be rewritten
					 // and I don't want to do that...
				$temp->value = $this->value;
				$temp->_rshift($shift);
		}

		return $temp;
	}

	/**
	 * Logical Left Shift
	 *
	 * Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift.
	 *
	 * @param Integer $shift
	 * @return biginteger
	 * @access public
	 * @internal The only version that yields any speed increases is the internal version.
	 */
	function bitwise_left_shift($shift)
	{
		$temp = new biginteger();

		switch ( MATH_BIGINTEGER_MODE )
		{
			case MATH_BIGINTEGER_MODE_GMP:
				static $two;

				if (empty($two))
				{
					$two = gmp_init('2');
				}

				$temp->value = gmp_mul($this->value, gmp_pow($two, $shift));

				break;
			case MATH_BIGINTEGER_MODE_BCMATH:
				$temp->value = bcmul($this->value, bcpow('2', $shift));

				break;
			default: // could just replace _rshift with this, but then all _lshift() calls would need to be rewritten
					 // and I don't want to do that...
				$temp->value = $this->value;
				$temp->_lshift($shift);
		}

		return $temp;
	}

	/**
	 * Generate a random number
	 *
	 * $generator should be the name of a random number generating function whose first parameter is the minimum
	 * value and whose second parameter is the maximum value.  If this function needs to be seeded, it should be
	 * done before this function is called.
	 *
	 * @param optional Integer $min
	 * @param optional Integer $max
	 * @param optional String $generator
	 * @return biginteger
	 * @access public
	 */
	function random($min = false, $max = false, $generator = 'mt_rand')
	{
		if ($min === false)
		{
			$min = new biginteger(0);
		}

		if ($max === false)
		{
			$max = new biginteger(0x7FFFFFFF);
		}

		$compare = $max->compare($min);

		if (!$compare)
		{
			return $min;
		}
		else if ($compare < 0)
		{
			// if $min is bigger then $max, swap $min and $max
			$temp = $max;
			$max = $min;
			$min = $temp;
		}

		$max = $max->subtract($min);
		$max = ltrim($max->to_bytes(), chr(0));
		$size = strlen($max) - 1;
		$random = '';

		$bytes = $size & 3;
		for ($i = 0; $i < $bytes; $i++)
		{
			$random.= chr($generator(0, 255));
		}

		$blocks = $size >> 2;
		for ($i = 0; $i < $blocks; $i++)
		{
			$random.= pack('N', $generator(-2147483648, 0x7FFFFFFF));
		}

		$temp = new biginteger($random, 256);
		if ($temp->compare(new biginteger(substr($max, 1), 256)) > 0)
		{
			$random = chr($generator(0, ord($max[0]) - 1)) . $random;
		}
		else
		{
			$random = chr($generator(0, ord($max[0])	)) . $random;
		}

		$random = new biginteger($random, 256);

		return $random->add($min);
	}

	/**
	 * Logical Left Shift
	 *
	 * Shifts BigInteger's by $shift bits.
	 *
	 * @param Integer $shift
	 * @access private
	 */
	function _lshift($shift)
	{
		if ( $shift == 0 )
		{
			return;
		}

		$num_digits = floor($shift / 26);
		$shift %= 26;
		$shift = 1 << $shift;

		$carry = 0;

		for ($i = 0; $i < count($this->value); $i++)
		{
			$temp = $this->value[$i] * $shift + $carry;
			$carry = floor($temp / 0x4000000);
			$this->value[$i] = $temp - $carry * 0x4000000;
		}

		if ( $carry )
		{
			$this->value[] = $carry;
		}

		while ($num_digits--)
		{
			array_unshift($this->value, 0);
		}
	}

	/**
	 * Logical Right Shift
	 *
	 * Shifts BigInteger's by $shift bits.
	 *
	 * @param Integer $shift
	 * @access private
	 */
	function _rshift($shift)
	{
		if ($shift == 0)
		{
			$this->_normalize();
		}

		$num_digits = floor($shift / 26);
		$shift %= 26;
		$carry_shift = 26 - $shift;
		$carry_mask = (1 << $shift) - 1;

		if ( $num_digits )
		{
			$this->value = array_slice($this->value, $num_digits);
		}

		$carry = 0;

		for ($i = count($this->value) - 1; $i >= 0; $i--)
		{
			$temp = $this->value[$i] >> $shift | $carry;
			$carry = ($this->value[$i] & $carry_mask) << $carry_shift;
			$this->value[$i] = $temp;
		}

		$this->_normalize();
	}

	/**
	 * Normalize
	 *
	 * Deletes leading zeros.
	 *
	 * @see divide()
	 * @return Math_BigInteger
	 * @access private
	 */
	function _normalize()
	{
		if ( !count($this->value) )
		{
			return $this;
		}

		for ($i=count($this->value) - 1; $i >= 0; $i--)
		{
			if ( $this->value[$i] )
			{
				break;
			}
			unset($this->value[$i]);
		}

		return $this;
	}

	/**
	 * Array Repeat
	 *
	 * @param $input Array
	 * @param $multiplier mixed
	 * @return Array
	 * @access private
	 */
	function _array_repeat($input, $multiplier)
	{
		return ($multiplier) ? array_fill(0, $multiplier, $input) : array();
	}

	/**
	 * Logical Left Shift
	 *
	 * Shifts binary strings $shift bits, essentially multiplying by 2**$shift.
	 *
	 * @param $x String
	 * @param $shift Integer
	 * @return String
	 * @access private
	 */
	function _base256_lshift(&$x, $shift)
	{
		if ($shift == 0)
		{
			return;
		}

		$num_bytes = $shift >> 3; // eg. floor($shift/8)
		$shift &= 7; // eg. $shift % 8

		$carry = 0;
		for ($i = strlen($x) - 1; $i >= 0; $i--)
		{
			$temp = ord($x[$i]) << $shift | $carry;
			$x[$i] = chr($temp);
			$carry = $temp >> 8;
		}
		$carry = ($carry != 0) ? chr($carry) : '';
		$x = $carry . $x . str_repeat(chr(0), $num_bytes);
	}

	/**
	 * Logical Right Shift
	 *
	 * Shifts binary strings $shift bits, essentially dividing by 2**$shift and returning the remainder.
	 *
	 * @param $x String
	 * @param $shift Integer
	 * @return String
	 * @access private
	 */
	function _base256_rshift(&$x, $shift)
	{
		if ($shift == 0)
		{
			$x = ltrim($x, chr(0));
			return '';
		}

		$num_bytes = $shift >> 3; // eg. floor($shift/8)
		$shift &= 7; // eg. $shift % 8

		$remainder = '';
		if ($num_bytes)
		{
			$start = $num_bytes > strlen($x) ? -strlen($x) : -$num_bytes;
			$remainder = substr($x, $start);
			$x = substr($x, 0, -$num_bytes);
		}

		$carry = 0;
		$carry_shift = 8 - $shift;
		for ($i = 0; $i < strlen($x); $i++)
		{
			$temp = (ord($x[$i]) >> $shift) | $carry;
			$carry = (ord($x[$i]) << $carry_shift) & 0xFF;
			$x[$i] = chr($temp);
		}
		$x = ltrim($x, chr(0));

		$remainder = chr($carry >> $carry_shift) . $remainder;

		return ltrim($remainder, chr(0));
	}

	// one quirk about how the following functions are implemented is that PHP defines N to be an unsigned long
	// at 32-bits, while java's longs are 64-bits.

	/**
	 * Converts 32-bit integers to bytes.
	 *
	 * @param Integer $x
	 * @return String
	 * @access private
	 */
	function _int2bytes($x)
	{
		return ltrim(pack('N', $x), chr(0));
	}

	/**
	 * Converts bytes to 32-bit integers
	 *
	 * @param String $x
	 * @return Integer
	 * @access private
	 */
	function _bytes2int($x)
	{
		$temp = unpack('Nint', str_pad($x, 4, chr(0), STR_PAD_LEFT));
		return $temp['int'];
	}
}

?>