aboutsummaryrefslogtreecommitdiffstats
path: root/phpBB/includes/sftp/biginteger.php
diff options
context:
space:
mode:
Diffstat (limited to 'phpBB/includes/sftp/biginteger.php')
-rw-r--r--phpBB/includes/sftp/biginteger.php2162
1 files changed, 2162 insertions, 0 deletions
diff --git a/phpBB/includes/sftp/biginteger.php b/phpBB/includes/sftp/biginteger.php
new file mode 100644
index 0000000000..d9b90dacb8
--- /dev/null
+++ b/phpBB/includes/sftp/biginteger.php
@@ -0,0 +1,2162 @@
+<?php
+/**
+*
+* @package sftp
+* @version $Id$
+* @copyright (c) 2006 phpBB Group
+* @license http://opensource.org/licenses/gpl-license.php GNU Public License
+*
+*/
+
+/**
+* @ignore
+*/
+if (!defined('IN_PHPBB'))
+{
+ exit;
+}
+
+/**
+* Code from http://phpseclib.sourceforge.net/
+*
+* Modified by phpBB Group to meet our coding standards
+* and being able to integrate into phpBB
+*
+* Pure-PHP arbitrary precission integer arithmetic library
+*
+* Copyright 2007-2009 TerraFrost <terrafrost@php.net>
+* Copyright 2009+ phpBB
+*
+* @package sftp
+* @author TerraFrost <terrafrost@php.net>
+*/
+
+/**#@+
+ * @access private
+ * @see biginteger::_sliding_window()
+ */
+/**
+ * @see biginteger::_montgomery()
+ * @see biginteger::_undo_montgomery()
+ */
+define('MATH_BIGINTEGER_MONTGOMERY', 0);
+/**
+ * @see biginteger::_barrett()
+ */
+define('MATH_BIGINTEGER_BARRETT', 1);
+/**
+ * @see biginteger::_mod2()
+ */
+define('MATH_BIGINTEGER_POWEROF2', 2);
+/**
+ * @see biginteger::_remainder()
+ */
+define('MATH_BIGINTEGER_CLASSIC', 3);
+/**
+ * @see biginteger::_copy()
+ */
+define('MATH_BIGINTEGER_NONE', 4);
+/**#@-*/
+
+/**#@+
+ * @access private
+ * @see biginteger::_montgomery()
+ * @see biginteger::_barrett()
+ */
+/**
+ * $cache[MATH_BIGINTEGER_VARIABLE] tells us whether or not the cached data is still valid.
+ */
+define('MATH_BIGINTEGER_VARIABLE', 0);
+/**
+ * $cache[MATH_BIGINTEGER_DATA] contains the cached data.
+ */
+define('MATH_BIGINTEGER_DATA', 1);
+/**#@-*/
+
+/**#@+
+ * @access private
+ * @see biginteger::biginteger()
+ */
+/**
+ * To use the pure-PHP implementation
+ */
+define('MATH_BIGINTEGER_MODE_INTERNAL', 1);
+/**
+ * To use the BCMath library
+ *
+ * (if enabled; otherwise, the internal implementation will be used)
+ */
+define('MATH_BIGINTEGER_MODE_BCMATH', 2);
+/**
+ * To use the GMP library
+ *
+ * (if present; otherwise, either the BCMath or the internal implementation will be used)
+ */
+define('MATH_BIGINTEGER_MODE_GMP', 3);
+/**#@-*/
+
+/**
+ * Pure-PHP arbitrary precision integer arithmetic library. Supports base-2, base-10, base-16, and base-256
+ * numbers.
+ *
+ * @author Jim Wigginton <terrafrost@php.net>
+ * @version 1.0.0RC3
+ * @access public
+ * @package biginteger
+ */
+class biginteger
+{
+ /**
+ * Holds the BigInteger's value.
+ *
+ * @var Array
+ * @access private
+ */
+ var $value;
+
+ /**
+ * Holds the BigInteger's magnitude.
+ *
+ * @var Boolean
+ * @access private
+ */
+ var $is_negative = false;
+
+ /**
+ * Converts base-2, base-10, base-16, and binary strings (eg. base-256) to BigIntegers.
+ *
+ * If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using
+ * two's compliment. The sole exception to this is -10, which is treated the same as 10 is.
+ *
+ * @param optional $x base-10 number or base-$base number if $base set.
+ * @param optional integer $base
+ * @return biginteger
+ * @access public
+ */
+ function __construct($x = 0, $base = 10)
+ {
+ if ( !defined('MATH_BIGINTEGER_MODE') )
+ {
+ switch (true)
+ {
+ case extension_loaded('gmp'):
+ define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_GMP);
+ break;
+ case extension_loaded('bcmath'):
+ define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_BCMATH);
+ break;
+ default:
+ define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_INTERNAL);
+ }
+ }
+
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $this->value = gmp_init(0);
+ break;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ $this->value = '0';
+ break;
+ default:
+ $this->value = array();
+ }
+
+ if ($x === 0)
+ {
+ return;
+ }
+
+ switch ($base)
+ {
+ case -256:
+ if (ord($x[0]) & 0x80)
+ {
+ $x = ~$x;
+ $this->is_negative = true;
+ }
+ case 256:
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $temp = unpack('H*hex', $x);
+ $sign = $this->is_negative ? '-' : '';
+ $this->value = gmp_init($sign . '0x' . $temp['hex']);
+ break;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ // round $len to the nearest 4 (thanks, DavidMJ!)
+ $len = (strlen($x) + 3) & 0xFFFFFFFC;
+
+ $x = str_pad($x, $len, chr(0), STR_PAD_LEFT);
+
+ for ($i = 0; $i < $len; $i+= 4) {
+ $this->value = bcmul($this->value, '4294967296'); // 4294967296 == 2**32
+ $this->value = bcadd($this->value, 0x1000000 * ord($x[$i]) + ((ord($x[$i + 1]) << 16) | (ord($x[$i + 2]) << 8) | ord($x[$i + 3])));
+ }
+
+ if ($this->is_negative) {
+ $this->value = '-' . $this->value;
+ }
+
+ break;
+ // converts a base-2**8 (big endian / msb) number to base-2**26 (little endian / lsb)
+ case MATH_BIGINTEGER_MODE_INTERNAL:
+ while (strlen($x))
+ {
+ $this->value[] = $this->_bytes2int($this->_base256_rshift($x, 26));
+ }
+ }
+
+ if ($this->is_negative)
+ {
+ if (MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_INTERNAL)
+ {
+ $this->is_negative = false;
+ }
+ $temp = $this->add(new biginteger('-1'));
+ $this->value = $temp->value;
+ }
+ break;
+ case 16:
+ case -16:
+ if ($base > 0 && $x[0] == '-')
+ {
+ $this->is_negative = true;
+ $x = substr($x, 1);
+ }
+
+ $x = preg_replace('#^(?:0x)?([A-Fa-f0-9]*).*#', '$1', $x);
+
+ $is_negative = false;
+ if ($base < 0 && hexdec($x[0]) >= 8)
+ {
+ $this->is_negative = $is_negative = true;
+ $x = bin2hex(~pack('H*', $x));
+ }
+
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $temp = $this->is_negative ? '-0x' . $x : '0x' . $x;
+ $this->value = gmp_init($temp);
+ $this->is_negative = false;
+ break;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ $x = ( strlen($x) & 1 ) ? '0' . $x : $x;
+ $temp = new biginteger(pack('H*', $x), 256);
+ $this->value = $this->is_negative ? '-' . $temp->value : $temp->value;
+ $this->is_negative = false;
+ break;
+ case MATH_BIGINTEGER_MODE_INTERNAL:
+ $x = ( strlen($x) & 1 ) ? '0' . $x : $x;
+ $temp = new biginteger(pack('H*', $x), 256);
+ $this->value = $temp->value;
+ }
+
+ if ($is_negative)
+ {
+ $temp = $this->add(new biginteger('-1'));
+ $this->value = $temp->value;
+ }
+ break;
+ case 10:
+ case -10:
+ $x = preg_replace('#^(-?[0-9]*).*#', '$1', $x);
+
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $this->value = gmp_init($x);
+ break;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ // explicitly casting $x to a string is necessary, here, since doing $x[0] on -1 yields different
+ // results then doing it on '-1' does (modInverse does $x[0])
+ $this->value = (string) $x;
+ break;
+ case MATH_BIGINTEGER_MODE_INTERNAL:
+ $temp = new biginteger();
+
+ // array(10000000) is 10**7 in base-2**26. 10**7 is the closest to 2**26 we can get without passing it.
+ $multiplier = new biginteger();
+ $multiplier->value = array(10000000);
+
+ if ($x[0] == '-')
+ {
+ $this->is_negative = true;
+ $x = substr($x, 1);
+ }
+
+ $x = str_pad($x, strlen($x) + (6 * strlen($x)) % 7, 0, STR_PAD_LEFT);
+
+ while (strlen($x))
+ {
+ $temp = $temp->multiply($multiplier);
+ $temp = $temp->add(new biginteger($this->_int2bytes(substr($x, 0, 7)), 256));
+ $x = substr($x, 7);
+ }
+
+ $this->value = $temp->value;
+ }
+ break;
+ case 2: // base-2 support originally implemented by Lluis Pamies - thanks!
+ case -2:
+ if ($base > 0 && $x[0] == '-')
+ {
+ $this->is_negative = true;
+ $x = substr($x, 1);
+ }
+
+ $x = preg_replace('#^([01]*).*#', '$1', $x);
+ $x = str_pad($x, strlen($x) + (3 * strlen($x)) % 4, 0, STR_PAD_LEFT);
+
+ $str = '0x';
+ while (strlen($x))
+ {
+ $part = substr($x, 0, 4);
+ $str.= dechex(bindec($part));
+ $x = substr($x, 4);
+ }
+
+ if ($this->is_negative)
+ {
+ $str = '-' . $str;
+ }
+
+ $temp = new biginteger($str, 8 * $base); // ie. either -16 or +16
+ $this->value = $temp->value;
+ $this->is_negative = $temp->is_negative;
+
+ break;
+ default:
+ // base not supported, so we'll let $this == 0
+ }
+ }
+
+ /**
+ * Converts a BigInteger to a byte string (eg. base-256).
+ *
+ * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
+ * saved as two's compliment.
+ *
+ * @param Boolean $twos_compliment
+ * @return String
+ * @access public
+ * @internal Converts a base-2**26 number to base-2**8
+ */
+ function to_bytes($twos_compliment = false)
+ {
+ if ($twos_compliment)
+ {
+ $comparison = $this->compare(new biginteger());
+ if ($comparison == 0)
+ {
+ return '';
+ }
+
+ $temp = $comparison < 0 ? $this->add(new biginteger(1)) : $this->_copy();
+ $bytes = $temp->to_bytes();
+
+ if (empty($bytes)) // eg. if the number we're trying to convert is -1
+ {
+ $bytes = chr(0);
+ }
+
+ if (ord($bytes[0]) & 0x80)
+ {
+ $bytes = chr(0) . $bytes;
+ }
+
+ return $comparison < 0 ? ~$bytes : $bytes;
+ }
+
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ if (gmp_cmp($this->value, gmp_init(0)) == 0)
+ {
+ return '';
+ }
+
+ $temp = gmp_strval(gmp_abs($this->value), 16);
+ $temp = ( strlen($temp) & 1 ) ? '0' . $temp : $temp;
+
+ return ltrim(pack('H*', $temp), chr(0));
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ if ($this->value === '0')
+ {
+ return '';
+ }
+
+ $value = '';
+ $current = $this->value;
+
+ if ($current[0] == '-')
+ {
+ $current = substr($current, 1);
+ }
+
+ // we don't do four bytes at a time because then numbers larger than 1<<31 would be negative
+ // two's complimented numbers, which would break chr.
+ while (bccomp($current, '0') > 0)
+ {
+ $temp = bcmod($current, 0x1000000);
+ $value = chr($temp >> 16) . chr($temp >> 8) . chr($temp) . $value;
+ $current = bcdiv($current, 0x1000000);
+ }
+
+ return ltrim($value, chr(0));
+ }
+
+ if (!count($this->value))
+ {
+ return '';
+ }
+
+ $result = $this->_int2bytes($this->value[count($this->value) - 1]);
+
+ $temp = $this->_copy();
+
+ for ($i = count($temp->value) - 2; $i >= 0; $i--)
+ {
+ $temp->_base256_lshift($result, 26);
+ $result = $result | str_pad($temp->_int2bytes($temp->value[$i]), strlen($result), chr(0), STR_PAD_LEFT);
+ }
+
+ return $result;
+ }
+
+ /**
+ * Converts a BigInteger to a base-10 number.
+ *
+ * @return String
+ * @access public
+ * @internal Converts a base-2**26 number to base-10**7 (which is pretty much base-10)
+ */
+ function to_string()
+ {
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ return gmp_strval($this->value);
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ if ($this->value === '0')
+ {
+ return '0';
+ }
+
+ return ltrim($this->value, '0');
+ }
+
+ if (!count($this->value))
+ {
+ return '0';
+ }
+
+ $temp = $this->_copy();
+ $temp->is_negative = false;
+
+ $divisor = new biginteger();
+ $divisor->value = array(10000000); // eg. 10**7
+ while (count($temp->value))
+ {
+ list($temp, $mod) = $temp->divide($divisor);
+ $result = str_pad($this->_bytes2int($mod->to_bytes()), 7, '0', STR_PAD_LEFT) . $result;
+ }
+ $result = ltrim($result, '0');
+
+ if ($this->is_negative)
+ {
+ $result = '-' . $result;
+ }
+
+ return $result;
+ }
+
+ /**
+ * __toString() magic method
+ *
+ * Will be called, automatically, if you're supporting just PHP5. If you're supporting PHP4, you'll need to call
+ * toString().
+ *
+ * @access public
+ * @internal Implemented per a suggestion by Techie-Michael - thanks!
+ */
+ function __toString()
+ {
+ return $this->to_string();
+ }
+
+ /**
+ * Adds two BigIntegers.
+ *
+ * @param biginteger $y
+ * @return biginteger
+ * @access public
+ * @internal Performs base-2**52 addition
+ */
+ function add($y)
+ {
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $temp = new biginteger();
+ $temp->value = gmp_add($this->value, $y->value);
+
+ return $temp;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ $temp = new biginteger();
+ $temp->value = bcadd($this->value, $y->value);
+
+ return $temp;
+ }
+
+ // subtract, if appropriate
+ if ( $this->is_negative != $y->is_negative )
+ {
+ // is $y the negative number?
+ $y_negative = $this->compare($y) > 0;
+
+ $temp = $this->_copy();
+ $y = $y->_copy();
+ $temp->is_negative = $y->is_negative = false;
+
+ $diff = $temp->compare($y);
+ if ( !$diff )
+ {
+ return new biginteger();
+ }
+
+ $temp = $temp->subtract($y);
+
+ $temp->is_negative = ($diff > 0) ? !$y_negative : $y_negative;
+
+ return $temp;
+ }
+
+ $result = new biginteger();
+ $carry = 0;
+
+ $size = max(count($this->value), count($y->value));
+ $size+= $size & 1; // rounds $size to the nearest 2.
+
+ $x = array_pad($this->value, $size,0);
+ $y = array_pad($y->value, $size, 0);
+
+ for ($i = 0; $i < $size - 1; $i+=2)
+ {
+ $sum = $x[$i + 1] * 0x4000000 + $x[$i] + $y[$i + 1] * 0x4000000 + $y[$i] + $carry;
+ $carry = $sum >= 4503599627370496; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1
+ $sum = $carry ? $sum - 4503599627370496 : $sum;
+
+ $temp = floor($sum / 0x4000000);
+
+ $result->value[] = $sum - 0x4000000 * $temp; // eg. a faster alternative to fmod($sum, 0x4000000)
+ $result->value[] = $temp;
+ }
+
+ if ($carry)
+ {
+ $result->value[] = $carry;
+ }
+
+ $result->is_negative = $this->is_negative;
+
+ return $result->_normalize();
+ }
+
+ /**
+ * Subtracts two BigIntegers.
+ *
+ * @param biginteger $y
+ * @return biginteger
+ * @access public
+ * @internal Performs base-2**52 subtraction
+ */
+ function subtract($y)
+ {
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $temp = new biginteger();
+ $temp->value = gmp_sub($this->value, $y->value);
+
+ return $temp;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ $temp = new biginteger();
+ $temp->value = bcsub($this->value, $y->value);
+
+ return $temp;
+ }
+
+ // add, if appropriate
+ if ( $this->is_negative != $y->is_negative )
+ {
+ $is_negative = $y->compare($this) > 0;
+
+ $temp = $this->_copy();
+ $y = $y->_copy();
+ $temp->is_negative = $y->is_negative = false;
+
+ $temp = $temp->add($y);
+
+ $temp->is_negative = $is_negative;
+
+ return $temp;
+ }
+
+ $diff = $this->compare($y);
+
+ if ( !$diff )
+ {
+ return new biginteger();
+ }
+
+ // switch $this and $y around, if appropriate.
+ if ( (!$this->is_negative && $diff < 0) || ($this->is_negative && $diff > 0) )
+ {
+ $is_negative = $y->is_negative;
+
+ $temp = $this->_copy();
+ $y = $y->_copy();
+ $temp->is_negative = $y->is_negative = false;
+
+ $temp = $y->subtract($temp);
+ $temp->is_negative = !$is_negative;
+
+ return $temp;
+ }
+
+ $result = new biginteger();
+ $carry = 0;
+
+ $size = max(count($this->value), count($y->value));
+ $size+= $size % 2;
+
+ $x = array_pad($this->value, $size, 0);
+ $y = array_pad($y->value, $size, 0);
+
+ for ($i = 0; $i < $size - 1; $i+=2)
+ {
+ $sum = $x[$i + 1] * 0x4000000 + $x[$i] - $y[$i + 1] * 0x4000000 - $y[$i] + $carry;
+ $carry = $sum < 0 ? -1 : 0; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1
+ $sum = $carry ? $sum + 4503599627370496 : $sum;
+
+ $temp = floor($sum / 0x4000000);
+
+ $result->value[] = $sum - 0x4000000 * $temp;
+ $result->value[] = $temp;
+ }
+
+ // $carry shouldn't be anything other than zero, at this point, since we already made sure that $this
+ // was bigger than $y.
+
+ $result->is_negative = $this->is_negative;
+
+ return $result->_normalize();
+ }
+
+ /**
+ * Multiplies two BigIntegers
+ *
+ * @param biginteger $x
+ * @return biginteger
+ * @access public
+ * @internal Modeled after 'multiply' in MutableBigInteger.java.
+ */
+ function multiply($x)
+ {
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $temp = new biginteger();
+ $temp->value = gmp_mul($this->value, $x->value);
+
+ return $temp;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ $temp = new biginteger();
+ $temp->value = bcmul($this->value, $x->value);
+
+ return $temp;
+ }
+
+ if ( !$this->compare($x) )
+ {
+ return $this->_square();
+ }
+
+ $this_length = count($this->value);
+ $x_length = count($x->value);
+
+ if ( !$this_length || !$x_length ) // a 0 is being multiplied
+ {
+ return new biginteger();
+ }
+
+ $product = new biginteger();
+ $product->value = $this->_array_repeat(0, $this_length + $x_length);
+
+ // the following for loop could be removed if the for loop following it
+ // (the one with nested for loops) initially set $i to 0, but
+ // doing so would also make the result in one set of unnecessary adds,
+ // since on the outermost loops first pass, $product->value[$k] is going
+ // to always be 0
+
+ $carry = 0;
+ $i = 0;
+
+ for ($j = 0, $k = $i; $j < $this_length; $j++, $k++)
+ {
+ $temp = $product->value[$k] + $this->value[$j] * $x->value[$i] + $carry;
+ $carry = floor($temp / 0x4000000);
+ $product->value[$k] = $temp - 0x4000000 * $carry;
+ }
+
+ $product->value[$k] = $carry;
+
+ // the above for loop is what the previous comment was talking about. the
+ // following for loop is the "one with nested for loops"
+
+ for ($i = 1; $i < $x_length; $i++)
+ {
+ $carry = 0;
+
+ for ($j = 0, $k = $i; $j < $this_length; $j++, $k++)
+ {
+ $temp = $product->value[$k] + $this->value[$j] * $x->value[$i] + $carry;
+ $carry = floor($temp / 0x4000000);
+ $product->value[$k] = $temp - 0x4000000 * $carry;
+ }
+
+ $product->value[$k] = $carry;
+ }
+
+ $product->is_negative = $this->is_negative != $x->is_negative;
+
+ return $product->_normalize();
+ }
+
+ /**
+ * Squares a BigInteger
+ *
+ * Squaring can be done faster than multiplying a number by itself can be. See
+ * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=7 HAC 14.2.4} /
+ * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=141 MPM 5.3} for more information.
+ *
+ * @return biginteger
+ * @access private
+ */
+ function _square()
+ {
+ if ( empty($this->value) )
+ {
+ return new biginteger();
+ }
+
+ $max_index = count($this->value) - 1;
+
+ $square = new biginteger();
+ $square->value = $this->_array_repeat(0, 2 * $max_index);
+
+ for ($i = 0; $i <= $max_index; $i++)
+ {
+ $temp = $square->value[2 * $i] + $this->value[$i] * $this->value[$i];
+ $carry = floor($temp / 0x4000000);
+ $square->value[2 * $i] = $temp - 0x4000000 * $carry;
+
+ // note how we start from $i+1 instead of 0 as we do in multiplication.
+ for ($j = $i + 1; $j <= $max_index; $j++)
+ {
+ $temp = $square->value[$i + $j] + 2 * $this->value[$j] * $this->value[$i] + $carry;
+ $carry = floor($temp / 0x4000000);
+ $square->value[$i + $j] = $temp - 0x4000000 * $carry;
+ }
+
+ // the following line can yield values larger 2**15. at this point, PHP should switch
+ // over to floats.
+ $square->value[$i + $max_index + 1] = $carry;
+ }
+
+ return $square->_normalize();
+ }
+
+ /**
+ * Divides two BigIntegers.
+ *
+ * Returns an array whose first element contains the quotient and whose second element contains the
+ * "common residue". If the remainder would be positive, the "common residue" and the remainder are the
+ * same. If the remainder would be negative, the "common residue" is equal to the sum of the remainder
+ * and the divisor (basically, the "common residue" is the first positive modulo).
+ *
+ * @param biginteger $y
+ * @return Array
+ * @access public
+ * @internal This function is based off of {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=9 HAC 14.20}
+ * with a slight variation due to the fact that this script, initially, did not support negative numbers. Now,
+ * it does, but I don't want to change that which already works.
+ */
+ function divide($y)
+ {
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $quotient = new biginteger();
+ $remainder = new biginteger();
+
+ list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value);
+
+ if (gmp_sign($remainder->value) < 0)
+ {
+ $remainder->value = gmp_add($remainder->value, gmp_abs($y->value));
+ }
+
+ return array($quotient, $remainder);
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ $quotient = new biginteger();
+ $remainder = new biginteger();
+
+ $quotient->value = bcdiv($this->value, $y->value);
+ $remainder->value = bcmod($this->value, $y->value);
+
+ if ($remainder->value[0] == '-')
+ {
+ $remainder->value = bcadd($remainder->value, $y->value[0] == '-' ? substr($y->value, 1) : $y->value);
+ }
+
+ return array($quotient, $remainder);
+ }
+
+ $x = $this->_copy();
+ $y = $y->_copy();
+
+ $x_sign = $x->is_negative;
+ $y_sign = $y->is_negative;
+
+ $x->is_negative = $y->is_negative = false;
+
+ $diff = $x->compare($y);
+
+ if ( !$diff )
+ {
+ $temp = new biginteger();
+ $temp->value = array(1);
+ $temp->is_negative = $x_sign != $y_sign;
+ return array($temp, new biginteger());
+ }
+
+ if ( $diff < 0 )
+ {
+ // if $x is negative, "add" $y.
+ if ( $x_sign )
+ {
+ $x = $y->subtract($x);
+ }
+ return array(new biginteger(), $x);
+ }
+
+ // normalize $x and $y as described in HAC 14.23 / 14.24
+ // (incidently, i haven't been able to find a definitive example showing that this
+ // results in worth-while speedup, but whatever)
+ $msb = $y->value[count($y->value) - 1];
+ for ($shift = 0; !($msb & 0x2000000); $shift++)
+ {
+ $msb <<= 1;
+ }
+ $x->_lshift($shift);
+ $y->_lshift($shift);
+
+ $x_max = count($x->value) - 1;
+ $y_max = count($y->value) - 1;
+
+ $quotient = new biginteger();
+ $quotient->value = $this->_array_repeat(0, $x_max - $y_max + 1);
+
+ // $temp = $y << ($x_max - $y_max-1) in base 2**26
+ $temp = new biginteger();
+ $temp->value = array_merge($this->_array_repeat(0, $x_max - $y_max), $y->value);
+
+ while ( $x->compare($temp) >= 0 )
+ {
+ // calculate the "common residue"
+ $quotient->value[$x_max - $y_max]++;
+ $x = $x->subtract($temp);
+ $x_max = count($x->value) - 1;
+ }
+
+ for ($i = $x_max; $i >= $y_max + 1; $i--)
+ {
+ $x_value = array(
+ $x->value[$i],
+ ( $i > 0 ) ? $x->value[$i - 1] : 0,
+ ( $i - 1 > 0 ) ? $x->value[$i - 2] : 0
+ );
+ $y_value = array(
+ $y->value[$y_max],
+ ( $y_max > 0 ) ? $y_max - 1 : 0
+ );
+
+
+ $q_index = $i - $y_max - 1;
+ if ($x_value[0] == $y_value[0])
+ {
+ $quotient->value[$q_index] = 0x3FFFFFF;
+ }
+ else
+ {
+ $quotient->value[$q_index] = floor(
+ ($x_value[0] * 0x4000000 + $x_value[1])
+ /
+ $y_value[0]
+ );
+ }
+
+ $temp = new biginteger();
+ $temp->value = array($y_value[1], $y_value[0]);
+
+ $lhs = new biginteger();
+ $lhs->value = array($quotient->value[$q_index]);
+ $lhs = $lhs->multiply($temp);
+
+ $rhs = new biginteger();
+ $rhs->value = array($x_value[2], $x_value[1], $x_value[0]);
+
+ while ( $lhs->compare($rhs) > 0 )
+ {
+ $quotient->value[$q_index]--;
+
+ $lhs = new biginteger();
+ $lhs->value = array($quotient->value[$q_index]);
+ $lhs = $lhs->multiply($temp);
+ }
+
+ $corrector = new biginteger();
+ $temp = new biginteger();
+ $corrector->value = $temp->value = $this->_array_repeat(0, $q_index);
+ $temp->value[] = $quotient->value[$q_index];
+
+ $temp = $temp->multiply($y);
+
+ if ( $x->compare($temp) < 0 )
+ {
+ $corrector->value[] = 1;
+ $x = $x->add($corrector->multiply($y));
+ $quotient->value[$q_index]--;
+ }
+
+ $x = $x->subtract($temp);
+ $x_max = count($x->value) - 1;
+ }
+
+ // unnormalize the remainder
+ $x->_rshift($shift);
+
+ $quotient->is_negative = $x_sign != $y_sign;
+
+ // calculate the "common residue", if appropriate
+ if ( $x_sign )
+ {
+ $y->_rshift($shift);
+ $x = $y->subtract($x);
+ }
+
+ return array($quotient->_normalize(), $x);
+ }
+
+ /**
+ * Performs modular exponentiation.
+ *
+ * @param biginteger $e
+ * @param biginteger $n
+ * @return biginteger
+ * @access public
+ * @internal The most naive approach to modular exponentiation has very unreasonable requirements, and
+ * and although the approach involving repeated squaring does vastly better, it, too, is impractical
+ * for our purposes. The reason being that division - by far the most complicated and time-consuming
+ * of the basic operations (eg. +,-,*,/) - occurs multiple times within it.
+ *
+ * Modular reductions resolve this issue. Although an individual modular reduction takes more time
+ * then an individual division, when performed in succession (with the same modulo), they're a lot faster.
+ *
+ * The two most commonly used modular reductions are Barrett and Montgomery reduction. Montgomery reduction,
+ * although faster, only works when the gcd of the modulo and of the base being used is 1. In RSA, when the
+ * base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because
+ * the product of two odd numbers is odd), but what about when RSA isn't used?
+ *
+ * In contrast, Barrett reduction has no such constraint. As such, some bigint implementations perform a
+ * Barrett reduction after every operation in the modpow function. Others perform Barrett reductions when the
+ * modulo is even and Montgomery reductions when the modulo is odd. BigInteger.java's modPow method, however,
+ * uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and
+ * the other, a power of two - and recombine them, later. This is the method that this modPow function uses.
+ * {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates.
+ */
+ function mod_pow($e, $n)
+ {
+ $n = $n->abs();
+ if ($e->compare(new biginteger()) < 0)
+ {
+ $e = $e->abs();
+
+ $temp = $this->modInverse($n);
+ if ($temp === false)
+ {
+ return false;
+ }
+
+ return $temp->modPow($e, $n);
+ }
+
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $temp = new biginteger();
+ $temp->value = gmp_powm($this->value, $e->value, $n->value);
+
+ return $temp;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ $temp = new biginteger();
+ $temp->value = bcpowmod($this->value, $e->value, $n->value);
+
+ return $temp;
+ }
+
+ if ( empty($e->value) )
+ {
+ $temp = new biginteger();
+ $temp->value = array(1);
+ return $temp;
+ }
+
+ if ( $e->value == array(1) )
+ {
+ list(, $temp) = $this->divide($n);
+ return $temp;
+ }
+
+ if ( $e->value == array(2) )
+ {
+ $temp = $this->_square();
+ list(, $temp) = $temp->divide($n);
+ return $temp;
+ }
+
+ // is the modulo odd?
+ if ( $n->value[0] & 1 )
+ {
+ return $this->_slidingWindow($e, $n, MATH_BIGINTEGER_MONTGOMERY);
+ }
+ // if it's not, it's even
+
+ // find the lowest set bit (eg. the max pow of 2 that divides $n)
+ for ($i = 0; $i < count($n->value); $i++)
+ {
+ if ( $n->value[$i] )
+ {
+ $temp = decbin($n->value[$i]);
+ $j = strlen($temp) - strrpos($temp, '1') - 1;
+ $j+= 26 * $i;
+ break;
+ }
+ }
+ // at this point, 2^$j * $n/(2^$j) == $n
+
+ $mod1 = $n->_copy();
+ $mod1->_rshift($j);
+ $mod2 = new biginteger();
+ $mod2->value = array(1);
+ $mod2->_lshift($j);
+
+ $part1 = ( $mod1->value != array(1) ) ? $this->_slidingWindow($e, $mod1, MATH_BIGINTEGER_MONTGOMERY) : new biginteger();
+ $part2 = $this->_sliding_window($e, $mod2, MATH_BIGINTEGER_POWEROF2);
+
+ $y1 = $mod2->mod_inverse($mod1);
+ $y2 = $mod1->mod_inverse($mod2);
+
+ $result = $part1->multiply($mod2);
+ $result = $result->multiply($y1);
+
+ $temp = $part2->multiply($mod1);
+ $temp = $temp->multiply($y2);
+
+ $result = $result->add($temp);
+ list(, $result) = $result->divide($n);
+
+ return $result;
+ }
+
+ /**
+ * Sliding Window k-ary Modular Exponentiation
+ *
+ * Based on {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=27 HAC 14.85} /
+ * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=210 MPM 7.7}. In a departure from those algorithims,
+ * however, this function performs a modular reduction after every multiplication and squaring operation.
+ * As such, this function has the same preconditions that the reductions being used do.
+ *
+ * @param biginteger $e
+ * @param biginteger $n
+ * @param Integer $mode
+ * @return biginteger
+ * @access private
+ */
+ function _sliding_window($e, $n, $mode)
+ {
+ static $window_ranges = array(7, 25, 81, 241, 673, 1793); // from BigInteger.java's oddModPow function
+ //static $window_ranges = array(0, 7, 36, 140, 450, 1303, 3529); // from MPM 7.3.1
+
+ $e_length = count($e->value) - 1;
+ $e_bits = decbin($e->value[$e_length]);
+ for ($i = $e_length - 1; $i >= 0; $i--)
+ {
+ $e_bits.= str_pad(decbin($e->value[$i]), 26, '0', STR_PAD_LEFT);
+ }
+ $e_length = strlen($e_bits);
+
+ // calculate the appropriate window size.
+ // $window_size == 3 if $window_ranges is between 25 and 81, for example.
+ for ($i = 0, $window_size = 1; $e_length > $window_ranges[$i] && $i < count($window_ranges); $window_size++, $i++);
+
+ switch ($mode)
+ {
+ case MATH_BIGINTEGER_MONTGOMERY:
+ $reduce = '_montgomery';
+ $undo = '_undo_montgomery';
+ break;
+ case MATH_BIGINTEGER_BARRETT:
+ $reduce = '_barrett';
+ $undo = '_barrett';
+ break;
+ case MATH_BIGINTEGER_POWEROF2:
+ $reduce = '_mod2';
+ $undo = '_mod2';
+ break;
+ case MATH_BIGINTEGER_CLASSIC:
+ $reduce = '_remainder';
+ $undo = '_remainder';
+ break;
+ case MATH_BIGINTEGER_NONE:
+ // ie. do no modular reduction. useful if you want to just do pow as opposed to modPow.
+ $reduce = '_copy';
+ $undo = '_copy';
+ break;
+ default:
+ // an invalid $mode was provided
+ }
+
+ // precompute $this^0 through $this^$window_size
+ $powers = array();
+ $powers[1] = $this->$undo($n);
+ $powers[2] = $powers[1]->_square();
+ $powers[2] = $powers[2]->$reduce($n);
+
+ // we do every other number since substr($e_bits, $i, $j+1) (see below) is supposed to end
+ // in a 1. ie. it's supposed to be odd.
+ $temp = 1 << ($window_size - 1);
+ for ($i = 1; $i < $temp; $i++)
+ {
+ $powers[2 * $i + 1] = $powers[2 * $i - 1]->multiply($powers[2]);
+ $powers[2 * $i + 1] = $powers[2 * $i + 1]->$reduce($n);
+ }
+
+ $result = new biginteger();
+ $result->value = array(1);
+ $result = $result->$undo($n);
+
+ for ($i = 0; $i < $e_length; )
+ {
+ if ( !$e_bits[$i] )
+ {
+ $result = $result->_square();
+ $result = $result->$reduce($n);
+ $i++;
+ }
+ else
+ {
+ for ($j = $window_size - 1; $j >= 0; $j--)
+ {
+ if ( $e_bits[$i + $j] )
+ {
+ break;
+ }
+ }
+
+ for ($k = 0; $k <= $j; $k++) // eg. the length of substr($e_bits, $i, $j+1)
+ {
+ $result = $result->_square();
+ $result = $result->$reduce($n);
+ }
+
+ $result = $result->multiply($powers[bindec(substr($e_bits, $i, $j + 1))]);
+ $result = $result->$reduce($n);
+
+ $i+=$j + 1;
+ }
+ }
+
+ $result = $result->$reduce($n);
+ return $result->_normalize();
+ }
+
+ /**
+ * Remainder
+ *
+ * A wrapper for the divide function.
+ *
+ * @see divide()
+ * @see _slidingWindow()
+ * @access private
+ * @param biginteger
+ * @return biginteger
+ */
+ function _remainder($n)
+ {
+ list(, $temp) = $this->divide($n);
+ return $temp;
+ }
+
+ /**
+ * Modulos for Powers of Two
+ *
+ * Calculates $x%$n, where $n = 2**$e, for some $e. Since this is basically the same as doing $x & ($n-1),
+ * we'll just use this function as a wrapper for doing that.
+ *
+ * @see _slidingWindow()
+ * @access private
+ * @param biginteger
+ * @return biginteger
+ */
+ function _mod2($n)
+ {
+ $temp = new biginteger();
+ $temp->value = array(1);
+ return $this->bitwise_and($n->subtract($temp));
+ }
+
+ /**
+ * Barrett Modular Reduction
+ *
+ * See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=14 HAC 14.3.3} /
+ * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=165 MPM 6.2.5} for more information. Modified slightly,
+ * so as not to require negative numbers (initially, this script didn't support negative numbers).
+ *
+ * @see _slidingWindow()
+ * @access private
+ * @param biginteger
+ * @return biginteger
+ */
+ function _barrett($n)
+ {
+ static $cache;
+
+ $n_length = count($n->value);
+
+ if ( !isset($cache[MATH_BIGINTEGER_VARIABLE]) || $n->compare($cache[MATH_BIGINTEGER_VARIABLE]) )
+ {
+ $cache[MATH_BIGINTEGER_VARIABLE] = $n;
+ $temp = new biginteger();
+ $temp->value = $this->_array_repeat(0, 2 * $n_length);
+ $temp->value[] = 1;
+ list($cache[MATH_BIGINTEGER_DATA], ) = $temp->divide($n);
+ }
+
+ $temp = new biginteger();
+ $temp->value = array_slice($this->value, $n_length - 1);
+ $temp = $temp->multiply($cache[MATH_BIGINTEGER_DATA]);
+ $temp->value = array_slice($temp->value, $n_length + 1);
+
+ $result = new biginteger();
+ $result->value = array_slice($this->value, 0, $n_length + 1);
+ $temp = $temp->multiply($n);
+ $temp->value = array_slice($temp->value, 0, $n_length + 1);
+
+ if ($result->compare($temp) < 0)
+ {
+ $corrector = new biginteger();
+ $corrector->value = $this->_array_repeat(0, $n_length + 1);
+ $corrector->value[] = 1;
+ $result = $result->add($corrector);
+ }
+
+ $result = $result->subtract($temp);
+ while ($result->compare($n) > 0)
+ {
+ $result = $result->subtract($n);
+ }
+
+ return $result;
+ }
+
+ /**
+ * Montgomery Modular Reduction
+ *
+ * ($this->_montgomery($n))->_undoMontgomery($n) yields $x%$n.
+ * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=170 MPM 6.3} provides insights on how this can be
+ * improved upon (basically, by using the comba method). gcd($n, 2) must be equal to one for this function
+ * to work correctly.
+ *
+ * @see _undoMontgomery()
+ * @see _slidingWindow()
+ * @access private
+ * @param biginteger
+ * @return biginteger
+ */
+ function _montgomery($n)
+ {
+ static $cache;
+
+ if ( !isset($cache[MATH_BIGINTEGER_VARIABLE]) || $n->compare($cache[MATH_BIGINTEGER_VARIABLE]) )
+ {
+ $cache[MATH_BIGINTEGER_VARIABLE] = $n;
+ $cache[MATH_BIGINTEGER_DATA] = $n->_mod_inverse67108864();
+ }
+
+ $result = $this->_copy();
+
+ $n_length = count($n->value);
+
+ for ($i = 0; $i < $n_length; $i++)
+ {
+ $temp = new biginteger();
+ $temp->value = array(
+ ($result->value[$i] * $cache[MATH_BIGINTEGER_DATA]) & 0x3FFFFFF
+ );
+ $temp = $temp->multiply($n);
+ $temp->value = array_merge($this->_array_repeat(0, $i), $temp->value);
+ $result = $result->add($temp);
+ }
+
+ $result->value = array_slice($result->value, $n_length);
+
+ if ($result->compare($n) >= 0)
+ {
+ $result = $result->subtract($n);
+ }
+
+ return $result->_normalize();
+ }
+
+ /**
+ * Undo Montgomery Modular Reduction
+ *
+ * @see _montgomery()
+ * @see _slidingWindow()
+ * @access private
+ * @param biginteger
+ * @return biginteger
+ */
+ function _undo_montgomery($n)
+ {
+ $temp = new biginteger();
+ $temp->value = array_merge($this->_array_repeat(0, count($n->value)), $this->value);
+ list(, $temp) = $temp->divide($n);
+ return $temp->_normalize();
+ }
+
+ /**
+ * Modular Inverse of a number mod 2**26 (eg. 67108864)
+ *
+ * Based off of the bnpInvDigit function implemented and justified in the following URL:
+ *
+ * {@link http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js}
+ *
+ * The following URL provides more info:
+ *
+ * {@link http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85}
+ *
+ * As for why we do all the bitmasking... strange things can happen when converting from floats to ints. For
+ * instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields
+ * int(-2147483648). To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't
+ * auto-converted to floats. The outermost bitmask is present because without it, there's no guarantee that
+ * the "residue" returned would be the so-called "common residue". We use fmod, in the last step, because the
+ * maximum possible $x is 26 bits and the maximum $result is 16 bits. Thus, we have to be able to handle up to
+ * 40 bits, which only 64-bit floating points will support.
+ *
+ * Thanks to Pedro Gimeno Fortea for input!
+ *
+ * @see _montgomery()
+ * @access private
+ * @return Integer
+ */
+ function _mod_inverse67108864() // 2**26 == 67108864
+ {
+ $x = -$this->value[0];
+ $result = $x & 0x3; // x**-1 mod 2**2
+ $result = ($result * (2 - $x * $result)) & 0xF; // x**-1 mod 2**4
+ $result = ($result * (2 - ($x & 0xFF) * $result)) & 0xFF; // x**-1 mod 2**8
+ $result = ($result * ((2 - ($x & 0xFFFF) * $result) & 0xFFFF)) & 0xFFFF; // x**-1 mod 2**16
+ $result = fmod($result * (2 - fmod($x * $result, 0x4000000)), 0x4000000); // x**-1 mod 2**26
+ return $result & 0x3FFFFFF;
+ }
+
+ /**
+ * Calculates modular inverses.
+ *
+ * @param biginteger $n
+ * @return mixed false, if no modular inverse exists, biginteger, otherwise.
+ * @access public
+ * @internal Calculates the modular inverse of $this mod $n using the binary xGCD algorithim described in
+ * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=19 HAC 14.61}. As the text above 14.61 notes,
+ * the more traditional algorithim requires "relatively costly multiple-precision divisions". See
+ * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=21 HAC 14.64} for more information.
+ */
+ function mod_inverse($n)
+ {
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $temp = new biginteger();
+ $temp->value = gmp_invert($this->value, $n->value);
+
+ return ( $temp->value === false ) ? false : $temp;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ // it might be faster to use the binary xGCD algorithim here, as well, but (1) that algorithim works
+ // best when the base is a power of 2 and (2) i don't think it'd make much difference, anyway. as is,
+ // the basic extended euclidean algorithim is what we're using.
+
+ // if $x is less than 0, the first character of $x is a '-', so we'll remove it. we can do this because
+ // $x mod $n == $x mod -$n.
+ $n = (bccomp($n->value, '0') < 0) ? substr($n->value, 1) : $n->value;
+
+ if (bccomp($this->value,'0') < 0)
+ {
+ $negated_this = new biginteger();
+ $negated_this->value = substr($this->value, 1);
+
+ $temp = $negated_this->mod_inverse(new biginteger($n));
+
+ if ($temp === false)
+ {
+ return false;
+ }
+
+ $temp->value = bcsub($n, $temp->value);
+
+ return $temp;
+ }
+
+ $u = $this->value;
+ $v = $n;
+
+ $a = '1';
+ $c = '0';
+
+ while (true)
+ {
+ $q = bcdiv($u, $v);
+ $temp = $u;
+ $u = $v;
+ $v = bcsub($temp, bcmul($v, $q));
+
+ if (bccomp($v, '0') == 0) {
+ break;
+ }
+
+ $temp = $a;
+ $a = $c;
+ $c = bcsub($temp, bcmul($c, $q));
+ }
+
+ $temp = new biginteger();
+ $temp->value = (bccomp($c, '0') < 0) ? bcadd($c, $n) : $c;
+
+ // $u contains the gcd of $this and $n
+ return (bccomp($u,'1') == 0) ? $temp : false;
+ }
+
+ // if $this and $n are even, return false.
+ if ( !($this->value[0]&1) && !($n->value[0]&1) )
+ {
+ return false;
+ }
+
+ $n = $n->_copy();
+ $n->is_negative = false;
+
+ if ($this->compare(new biginteger()) < 0)
+ {
+ // is_negative is currently true. since we need it to be false, we'll just set it to false, temporarily,
+ // and reset it as true, later.
+ $this->is_negative = false;
+
+ $temp = $this->mod_inverse($n);
+
+ if ($temp === false)
+ {
+ return false;
+ }
+
+ $temp = $n->subtract($temp);
+
+ $this->is_negative = true;
+
+ return $temp;
+ }
+
+ $u = $n->_copy();
+ $x = $this;
+ //list(, $x) = $this->divide($n);
+ $v = $x->_copy();
+
+ $a = new biginteger();
+ $b = new biginteger();
+ $c = new biginteger();
+ $d = new biginteger();
+
+ $a->value = $d->value = array(1);
+
+ while ( !empty($u->value) )
+ {
+ while ( !($u->value[0] & 1) )
+ {
+ $u->_rshift(1);
+ if ( ($a->value[0] & 1) || ($b->value[0] & 1) )
+ {
+ $a = $a->add($x);
+ $b = $b->subtract($n);
+ }
+ $a->_rshift(1);
+ $b->_rshift(1);
+ }
+
+ while ( !($v->value[0] & 1) )
+ {
+ $v->_rshift(1);
+ if ( ($c->value[0] & 1) || ($d->value[0] & 1) )
+ {
+ $c = $c->add($x);
+ $d = $d->subtract($n);
+ }
+ $c->_rshift(1);
+ $d->_rshift(1);
+ }
+
+ if ($u->compare($v) >= 0)
+ {
+ $u = $u->subtract($v);
+ $a = $a->subtract($c);
+ $b = $b->subtract($d);
+ }
+ else
+ {
+ $v = $v->subtract($u);
+ $c = $c->subtract($a);
+ $d = $d->subtract($b);
+ }
+
+ $u->_normalize();
+ }
+
+ // at this point, $v == gcd($this, $n). if it's not equal to 1, no modular inverse exists.
+ if ( $v->value != array(1) )
+ {
+ return false;
+ }
+
+ $d = ($d->compare(new biginteger()) < 0) ? $d->add($n) : $d;
+
+ return ($this->is_negative) ? $n->subtract($d) : $d;
+ }
+
+ /**
+ * Absolute value.
+ *
+ * @return biginteger
+ * @access public
+ */
+ function abs()
+ {
+ $temp = new biginteger();
+
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $temp->value = gmp_abs($this->value);
+ break;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ $temp->value = (bccomp($this->value, '0') < 0) ? substr($this->value, 1) : $this->value;
+ break;
+ default:
+ $temp->value = $this->value;
+ }
+
+ return $temp;
+ }
+
+ /**
+ * Compares two numbers.
+ *
+ * @param biginteger $x
+ * @return Integer < 0 if $this is less than $x; > 0 if $this is greater than $x, and 0 if they are equal.
+ * @access public
+ * @internal Could return $this->sub($x), but that's not as fast as what we do do.
+ */
+ function compare($x)
+ {
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ return gmp_cmp($this->value, $x->value);
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ return bccomp($this->value, $x->value);
+ }
+
+ $this->_normalize();
+ $x->_normalize();
+
+ if ( $this->is_negative != $x->is_negative )
+ {
+ return ( !$this->is_negative && $x->is_negative ) ? 1 : -1;
+ }
+
+ $result = $this->is_negative ? -1 : 1;
+
+ if ( count($this->value) != count($x->value) )
+ {
+ return ( count($this->value) > count($x->value) ) ? $result : -$result;
+ }
+
+ for ($i = count($this->value) - 1; $i >= 0; $i--)
+ {
+ if ($this->value[$i] != $x->value[$i])
+ {
+ return ( $this->value[$i] > $x->value[$i] ) ? $result : -$result;
+ }
+ }
+
+ return 0;
+ }
+
+ /**
+ * Returns a copy of $this
+ *
+ * PHP5 passes objects by reference while PHP4 passes by value. As such, we need a function to guarantee
+ * that all objects are passed by value, when appropriate. More information can be found here:
+ *
+ * {@link http://www.php.net/manual/en/language.oop5.basic.php#51624}
+ *
+ * @access private
+ * @return biginteger
+ */
+ function _copy()
+ {
+ $temp = new biginteger();
+ $temp->value = $this->value;
+ $temp->is_negative = $this->is_negative;
+ return $temp;
+ }
+
+ /**
+ * Logical And
+ *
+ * @param biginteger $x
+ * @access public
+ * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
+ * @return biginteger
+ */
+ function bitwise_and($x)
+ {
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $temp = new biginteger();
+ $temp->value = gmp_and($this->value, $x->value);
+
+ return $temp;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ return new biginteger($this->to_bytes() & $x->to_bytes(), 256);
+ }
+
+ $result = new biginteger();
+
+ $x_length = count($x->value);
+ for ($i = 0; $i < $x_length; $i++)
+ {
+ $result->value[] = $this->value[$i] & $x->value[$i];
+ }
+
+ return $result->_normalize();
+ }
+
+ /**
+ * Logical Or
+ *
+ * @param biginteger $x
+ * @access public
+ * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
+ * @return biginteger
+ */
+ function bitwise_or($x)
+ {
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $temp = new biginteger();
+ $temp->value = gmp_or($this->value, $x->value);
+
+ return $temp;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ return new biginteger($this->to_bytes() | $x->to_bytes(), 256);
+ }
+
+ $result = $this->_copy();
+
+ $x_length = count($x->value);
+ for ($i = 0; $i < $x_length; $i++)
+ {
+ $result->value[$i] = $this->value[$i] | $x->value[$i];
+ }
+
+ return $result->_normalize();
+ }
+
+ /**
+ * Logical Exclusive-Or
+ *
+ * @param biginteger $x
+ * @access public
+ * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
+ * @return biginteger
+ */
+ function bitwise_xor($x)
+ {
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ $temp = new biginteger();
+ $temp->value = gmp_xor($this->value, $x->value);
+
+ return $temp;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ return new biginteger($this->to_bytes() ^ $x->to_bytes(), 256);
+ }
+
+ $result = $this->_copy();
+
+ $x_length = count($x->value);
+ for ($i = 0; $i < $x_length; $i++)
+ {
+ $result->value[$i] = $this->value[$i] ^ $x->value[$i];
+ }
+
+ return $result->_normalize();
+ }
+
+ /**
+ * Logical Not
+ *
+ * Although integers can be converted to and from various bases with relative ease, there is one piece
+ * of information that is lost during such conversions. The number of leading zeros that number had
+ * or should have in any given base. Per that, if you convert 1 from decimal to binary, there's no
+ * way to know just how many leading zero's there should be. In truth, there could be any number.
+ *
+ * Normally, the number of leading zero's is unimportant. When doing "not", however, it is. The "not"
+ * of 1 on an 8-bit representation of 1 is 1111 1110. The "not" of 1 on a 16-bit representation of 1 is
+ * 1111 1111 1111 1110. When doing it on a number that's preceeded by an infinite number of zero's, it's
+ * infinite.
+ *
+ * This function assumes that there are no leading zero's - that the bit-representation being used is
+ * equal to the minimum number of required bits, unless otherwise specified in the optional parameter,
+ * where the optional parameter represents the bit-representation being used. If the specified
+ * bit-representation is smaller than the minimum number of bits required to represent the number, the
+ * latter will be used as the bit-representation.
+ *
+ * @param $bits Integer
+ * @access public
+ * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
+ * @return biginteger
+ */
+ function bitwise_not($bits = -1)
+ {
+ // calculuate "not" without regard to $bits
+ $temp = ~$this->to_bytes();
+ $msb = decbin(ord($temp[0]));
+ $msb = substr($msb, strpos($msb, '0'));
+ $temp[0] = chr(bindec($msb));
+
+ // see if we need to add extra leading 1's
+ $current_bits = strlen($msb) + 8 * strlen($temp) - 8;
+ $new_bits = $bits - $current_bits;
+ if ($new_bits <= 0)
+ {
+ return new biginteger($temp, 256);
+ }
+
+ // generate as many leading 1's as we need to.
+ $leading_ones = chr((1 << ($new_bits & 0x7)) - 1) . str_repeat(chr(0xFF), $new_bits >> 3);
+ $this->_base256_lshift($leading_ones, $current_bits);
+
+ $temp = str_pad($temp, ceil($bits / 8), chr(0), STR_PAD_LEFT);
+
+ return new biginteger($leading_ones | $temp, 256);
+ }
+
+ /**
+ * Logical Right Shift
+ *
+ * Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift.
+ *
+ * @param Integer $shift
+ * @return biginteger
+ * @access public
+ * @internal The only version that yields any speed increases is the internal version.
+ */
+ function bitwise_right_shift($shift)
+ {
+ $temp = new biginteger();
+
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ static $two;
+
+ if (empty($two))
+ {
+ $two = gmp_init('2');
+ }
+
+ $temp->value = gmp_div_q($this->value, gmp_pow($two, $shift));
+
+ break;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ $temp->value = bcdiv($this->value, bcpow('2', $shift));
+
+ break;
+ default: // could just replace _lshift with this, but then all _lshift() calls would need to be rewritten
+ // and I don't want to do that...
+ $temp->value = $this->value;
+ $temp->_rshift($shift);
+ }
+
+ return $temp;
+ }
+
+ /**
+ * Logical Left Shift
+ *
+ * Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift.
+ *
+ * @param Integer $shift
+ * @return biginteger
+ * @access public
+ * @internal The only version that yields any speed increases is the internal version.
+ */
+ function bitwise_left_shift($shift)
+ {
+ $temp = new biginteger();
+
+ switch ( MATH_BIGINTEGER_MODE )
+ {
+ case MATH_BIGINTEGER_MODE_GMP:
+ static $two;
+
+ if (empty($two))
+ {
+ $two = gmp_init('2');
+ }
+
+ $temp->value = gmp_mul($this->value, gmp_pow($two, $shift));
+
+ break;
+ case MATH_BIGINTEGER_MODE_BCMATH:
+ $temp->value = bcmul($this->value, bcpow('2', $shift));
+
+ break;
+ default: // could just replace _rshift with this, but then all _lshift() calls would need to be rewritten
+ // and I don't want to do that...
+ $temp->value = $this->value;
+ $temp->_lshift($shift);
+ }
+
+ return $temp;
+ }
+
+ /**
+ * Generate a random number
+ *
+ * $generator should be the name of a random number generating function whose first parameter is the minimum
+ * value and whose second parameter is the maximum value. If this function needs to be seeded, it should be
+ * done before this function is called.
+ *
+ * @param optional Integer $min
+ * @param optional Integer $max
+ * @param optional String $generator
+ * @return biginteger
+ * @access public
+ */
+ function random($min = false, $max = false, $generator = 'mt_rand')
+ {
+ if ($min === false)
+ {
+ $min = new biginteger(0);
+ }
+
+ if ($max === false)
+ {
+ $max = new biginteger(0x7FFFFFFF);
+ }
+
+ $compare = $max->compare($min);
+
+ if (!$compare)
+ {
+ return $min;
+ }
+ else if ($compare < 0)
+ {
+ // if $min is bigger then $max, swap $min and $max
+ $temp = $max;
+ $max = $min;
+ $min = $temp;
+ }
+
+ $max = $max->subtract($min);
+ $max = ltrim($max->to_bytes(), chr(0));
+ $size = strlen($max) - 1;
+ $random = '';
+
+ $bytes = $size & 3;
+ for ($i = 0; $i < $bytes; $i++)
+ {
+ $random.= chr($generator(0, 255));
+ }
+
+ $blocks = $size >> 2;
+ for ($i = 0; $i < $blocks; $i++)
+ {
+ $random.= pack('N', $generator(-2147483648, 0x7FFFFFFF));
+ }
+
+ $temp = new biginteger($random, 256);
+ if ($temp->compare(new biginteger(substr($max, 1), 256)) > 0)
+ {
+ $random = chr($generator(0, ord($max[0]) - 1)) . $random;
+ }
+ else
+ {
+ $random = chr($generator(0, ord($max[0]) )) . $random;
+ }
+
+ $random = new biginteger($random, 256);
+
+ return $random->add($min);
+ }
+
+ /**
+ * Logical Left Shift
+ *
+ * Shifts BigInteger's by $shift bits.
+ *
+ * @param Integer $shift
+ * @access private
+ */
+ function _lshift($shift)
+ {
+ if ( $shift == 0 )
+ {
+ return;
+ }
+
+ $num_digits = floor($shift / 26);
+ $shift %= 26;
+ $shift = 1 << $shift;
+
+ $carry = 0;
+
+ for ($i = 0; $i < count($this->value); $i++)
+ {
+ $temp = $this->value[$i] * $shift + $carry;
+ $carry = floor($temp / 0x4000000);
+ $this->value[$i] = $temp - $carry * 0x4000000;
+ }
+
+ if ( $carry )
+ {
+ $this->value[] = $carry;
+ }
+
+ while ($num_digits--)
+ {
+ array_unshift($this->value, 0);
+ }
+ }
+
+ /**
+ * Logical Right Shift
+ *
+ * Shifts BigInteger's by $shift bits.
+ *
+ * @param Integer $shift
+ * @access private
+ */
+ function _rshift($shift)
+ {
+ if ($shift == 0)
+ {
+ $this->_normalize();
+ }
+
+ $num_digits = floor($shift / 26);
+ $shift %= 26;
+ $carry_shift = 26 - $shift;
+ $carry_mask = (1 << $shift) - 1;
+
+ if ( $num_digits )
+ {
+ $this->value = array_slice($this->value, $num_digits);
+ }
+
+ $carry = 0;
+
+ for ($i = count($this->value) - 1; $i >= 0; $i--)
+ {
+ $temp = $this->value[$i] >> $shift | $carry;
+ $carry = ($this->value[$i] & $carry_mask) << $carry_shift;
+ $this->value[$i] = $temp;
+ }
+
+ $this->_normalize();
+ }
+
+ /**
+ * Normalize
+ *
+ * Deletes leading zeros.
+ *
+ * @see divide()
+ * @return Math_BigInteger
+ * @access private
+ */
+ function _normalize()
+ {
+ if ( !count($this->value) )
+ {
+ return $this;
+ }
+
+ for ($i=count($this->value) - 1; $i >= 0; $i--)
+ {
+ if ( $this->value[$i] )
+ {
+ break;
+ }
+ unset($this->value[$i]);
+ }
+
+ return $this;
+ }
+
+ /**
+ * Array Repeat
+ *
+ * @param $input Array
+ * @param $multiplier mixed
+ * @return Array
+ * @access private
+ */
+ function _array_repeat($input, $multiplier)
+ {
+ return ($multiplier) ? array_fill(0, $multiplier, $input) : array();
+ }
+
+ /**
+ * Logical Left Shift
+ *
+ * Shifts binary strings $shift bits, essentially multiplying by 2**$shift.
+ *
+ * @param $x String
+ * @param $shift Integer
+ * @return String
+ * @access private
+ */
+ function _base256_lshift(&$x, $shift)
+ {
+ if ($shift == 0)
+ {
+ return;
+ }
+
+ $num_bytes = $shift >> 3; // eg. floor($shift/8)
+ $shift &= 7; // eg. $shift % 8
+
+ $carry = 0;
+ for ($i = strlen($x) - 1; $i >= 0; $i--)
+ {
+ $temp = ord($x[$i]) << $shift | $carry;
+ $x[$i] = chr($temp);
+ $carry = $temp >> 8;
+ }
+ $carry = ($carry != 0) ? chr($carry) : '';
+ $x = $carry . $x . str_repeat(chr(0), $num_bytes);
+ }
+
+ /**
+ * Logical Right Shift
+ *
+ * Shifts binary strings $shift bits, essentially dividing by 2**$shift and returning the remainder.
+ *
+ * @param $x String
+ * @param $shift Integer
+ * @return String
+ * @access private
+ */
+ function _base256_rshift(&$x, $shift)
+ {
+ if ($shift == 0)
+ {
+ $x = ltrim($x, chr(0));
+ return '';
+ }
+
+ $num_bytes = $shift >> 3; // eg. floor($shift/8)
+ $shift &= 7; // eg. $shift % 8
+
+ $remainder = '';
+ if ($num_bytes)
+ {
+ $start = $num_bytes > strlen($x) ? -strlen($x) : -$num_bytes;
+ $remainder = substr($x, $start);
+ $x = substr($x, 0, -$num_bytes);
+ }
+
+ $carry = 0;
+ $carry_shift = 8 - $shift;
+ for ($i = 0; $i < strlen($x); $i++)
+ {
+ $temp = (ord($x[$i]) >> $shift) | $carry;
+ $carry = (ord($x[$i]) << $carry_shift) & 0xFF;
+ $x[$i] = chr($temp);
+ }
+ $x = ltrim($x, chr(0));
+
+ $remainder = chr($carry >> $carry_shift) . $remainder;
+
+ return ltrim($remainder, chr(0));
+ }
+
+ // one quirk about how the following functions are implemented is that PHP defines N to be an unsigned long
+ // at 32-bits, while java's longs are 64-bits.
+
+ /**
+ * Converts 32-bit integers to bytes.
+ *
+ * @param Integer $x
+ * @return String
+ * @access private
+ */
+ function _int2bytes($x)
+ {
+ return ltrim(pack('N', $x), chr(0));
+ }
+
+ /**
+ * Converts bytes to 32-bit integers
+ *
+ * @param String $x
+ * @return Integer
+ * @access private
+ */
+ function _bytes2int($x)
+ {
+ $temp = unpack('Nint', str_pad($x, 4, chr(0), STR_PAD_LEFT));
+ return $temp['int'];
+ }
+}
+
+?> \ No newline at end of file