open Stack open List exception Found exception Not_comparable exception GraphSort_circular_deps type ('a, 'b) either = Left of 'a | Right of 'b type ('a, 'b) or_option = Or_some of 'a | Or_error of 'b (**********************************************************************************) let internal_error s = failwith ("internal error: " ^ s) let id x = x let double a = a,a let swap (x,y) = (y,x) let safe_tl l = try tl l with _ -> [] let fstfst ((e, _), _) = e let sndfst ((_, e), _) = e let fstsnd (_, (e, _)) = e let sndsnd (_, (_, e)) = e let fst3 (e, _, _) = e let snd3 (_, e, _) = e let ter3 (_, _, e) = e let sndter3 (_, a, b) = (a, b) let o f g x = f (g x) let curry f x y = f (x,y) let uncurry f (x, y) = f x y let is_int n = ceil n = n let uncons = function | [] -> failwith "uncons" | e::l -> e,l let has_env var = try let _ = Sys.getenv var in true with Not_found -> false let some = function | Some e -> e | None -> failwith "some" let some_or = function | None -> id | Some e -> fun _ -> e let option2l = function | None -> [] | Some e -> [e] let prefer_some f a b = match a, b with | Some a, Some b -> Some (f a b) | None, _ -> b | _, None -> a let rec collect_accu f accu = function | [] -> accu | e::l -> collect_accu f (rev_append (f e) accu) l let collect f l = rev (collect_accu f [] l) let merge_some merge a b = match a,b with | None, None -> None | _, None -> a | None, _ -> b | Some(a), Some(b) -> Some(merge a b) let rec uniq = function | [] -> [] | e::l -> if mem e l then uniq l else e :: uniq l let rec uniq_ eq = function | [] -> [] | e::l -> try let _ = find (eq e) l in uniq_ eq l with Not_found -> e :: uniq_ eq l let rec non_uniq = function | [] -> [] | e::l -> if mem e l then e :: non_uniq l else non_uniq l let rec member_ eq e = function | [] -> false | e'::l -> if eq e e' then true else member_ eq e l let rec find_some p = function | [] -> raise Not_found | x :: l -> match p x with | Some v -> v | None -> find_some p l let fold_left1 f = function | [] -> failwith "fold_left1" | e :: l -> fold_left f e l let find_index e l = let rec find_index_ i = function | [] -> raise Not_found | e'::l -> if e=e' then i else find_index_ (i+1) l in find_index_ 0 l let rec find_some_ p = function | [] -> None | x :: l -> match p x with | Some v -> Some v | None -> find_some_ p l let rec fpartition p l = let rec part yes no = function | [] -> (rev yes, rev no) | x :: l -> (match p x with | None -> part yes (x :: no) l | Some v -> part (v :: yes) no l) in part [] [] l let partition_either f l = let rec part_either left right = function | [] -> (rev left, rev right) | x :: l -> (match f x with | Left e -> part_either (e :: left) right l | Right e -> part_either left (e :: right) l) in part_either [] [] l let rec keep_best f = let rec partition e = function | [] -> e, [] | e' :: l -> match f(e,e') with | None -> let (e'', l') = partition e l in e'', e' :: l' | Some e'' -> partition e'' l in function | [] -> [] | e::l -> let (e', l') = partition e l in e' :: keep_best f l' let rec keep_bests f l = let rec once e unchanged = function | [] -> None | e' :: l -> match f(e,e') with | None -> once e (e' :: unchanged) l | Some e'' -> Some(e'', unchanged @ l) in let rec as_many_as_possible e l = match once e [] l with | None -> None | Some(e', l') -> Some(some_or (as_many_as_possible e' l') (e', l')) in let rec try_with e l_done l_next = match as_many_as_possible e l_next with | None -> try_with_next (e :: l_done) l_next | Some(e2, l_next2) -> match as_many_as_possible e2 l_done with | None -> try_with_next (e2 :: l_done) l_next2 | Some(e3, l_done2) -> try_with e3 l_done2 l_next2 and try_with_next l_done = function | [] -> rev l_done | e::l_next -> try_with e l_done l_next in try_with_next [] l let rec fold_right1 f = function | [] -> failwith "fold_right1" | [e] -> e | e::l -> f e (fold_right1 f l) let rec for_all2_ p l1 l2 = match (l1, l2) with ([], []) -> true | (a1::l1, a2::l2) -> p a1 a2 && for_all2_ p l1 l2 | (_, _) -> false let maxl l = fold_right1 max l let rec stack2list s = let l = ref [] in Stack.iter (fun e -> l := e :: !l) s ; !l let rec stack_exists f s = try Stack.iter (fun e -> if f e then raise Found) s ; false with Found -> true let rec queue2list q = rev (Queue.fold (fun b a -> a :: b) [] q) let rec fix_point f p = let p' = f p in if p = p' then p else fix_point f p' let rec fix_point_withenv f env p = let p', env' = f env p in if p = p' then (p, env') else fix_point_withenv f env' p' let rec fix_point_ nb f p = let p' = f p in if p = p' then p, nb else fix_point_ (nb+1) f p' let rec group_by_2 = function | [] -> [] | a :: b :: l -> (a, b) :: group_by_2 l | _ -> failwith "group_by_2" (* let rec lfix_point f e = let e' = f(e) in if e = e' then e :: lfix_point f e' else [e] *) let do0_withenv doit f env l = let r_env = ref env in doit (fun e -> r_env := f !r_env e) l ; !r_env let do0_withenv2 doit f env l = let r_env = ref env in doit (fun e e' -> r_env := f !r_env e e') l ; !r_env let do_withenv doit f env l = let r_env = ref env in let l' = doit (fun e -> let e', env' = f !r_env e in r_env := env' ; e' ) l in l', !r_env let do2_withenv doit f env l1 l2 = let r_env = ref env in let l' = doit (fun e1 e2 -> let e', env' = f !r_env e1 e2 in r_env := env' ; e' ) l1 l2 in l', !r_env let do_collect doit f l1 = let l = ref [] in doit (fun i t -> l := f i t @ !l) l1 ; !l let map_withitself f l = let rec map_withitself_ done_ = function | [] -> done_ | e :: l -> let e' = f (done_ @ e :: l) e in map_withitself_ (done_ @ [ e' ]) l in map_withitself_ [] l let map_t2 f (x,y) = f x, f y let map_t3 f (x,y,z) = f x, f y, f z let map_option f = function | Some e -> Some (f e) | None -> None let map_optionoption f = function | Some e -> f e | None -> None let t2_option2option_t2 = function | (Some x, Some y) -> Some(x,y) | _ -> None let rec l_option2option_l = function | [] -> Some [] | None :: _l -> None | Some e :: l -> map_option (fun l -> e :: l) (l_option2option_l l) let map_option_env f (e, env) = map_option f e, env let t2_to_list (a,b) = [ a ; b ] let t3_to_list (a,b,c) = [ a ; b ; c ] let if_some bool val_ = if bool then Some val_ else None let rec fold_left_option f val_ = function | [] -> Some val_ | e::l -> match f val_ e with | None -> None | Some val_' -> fold_left_option f val_' l let collect_some_withenv f env l = let rec collect accu env = function | [] -> rev accu, env | e::l -> let e', env' = f env e in let accu' = match e' with | Some e' -> e'::accu | None -> accu in collect accu' env' l in collect [] env l let for_all_option_withenv remap f env l = let rec for_all env accu = function | [] -> Some(remap (rev accu)), env | e::l -> (match f env e with | None, env' -> None, env' | Some e', env' -> for_all env' (e' :: accu) l) in for_all env [] l let for_all2_option_withenv remap f env la lb = let rec for_all env accu = function | [], [] -> Some(remap (rev accu)), env | a::la, b::lb -> (match f env a b with | None, env' -> None, env' | Some ab, env' -> for_all env' (ab :: accu) (la, lb)) | _ -> None, env in for_all env [] (la, lb) let map_or_option f = function | Or_some e -> Or_some (f e) | Or_error err -> Or_error err let map_index f l = let rec map_ n = function | [] -> [] | e::l -> f e n :: map_ (n+1) l in map_ 0 l let filter_index f l = let rec filter_ n = function | [] -> [] | e::l -> let l' = filter_ (n+1) l in if f e n then e :: l' else l' in filter_ 0 l let iter_index f l = let rec iter_ n = function | [] -> () | e::l -> f e n ; iter_ (n+1) l in iter_ 0 l let map_fst f (x, y) = f x, y let map_snd f (x, y) = x, f y let map_withenv f env e = do_withenv map f env e let find_withenv f env e = do_withenv find f env e let filter_withenv f env e = do_withenv filter f env e let exists_withenv f env e = do_withenv exists f env e let map_t2_withenv f env e = do_withenv map_t2 f env e let for_all_withenv f env e = do_withenv for_all f env e let collect_withenv f env e = do_withenv collect f env e let partition_either_withenv f env e = do_withenv partition_either f env e let map2_withenv f env l1 l2 = do2_withenv map2 f env l1 l2 let for_all2_withenv f env l1 l2 = do2_withenv for_all2 f env l1 l2 let rec take n l = if n = 0 then [] else match l with | [] -> raise Not_found | e::l -> e :: take (n-1) l let last_n n l = rev (take n (rev l)) let last l = hd (last_n 1 l) let rec skipfirst e = function | [] -> [] | e'::l when e = e' -> skipfirst e l | l -> l let rec removelast = function | [] -> failwith "removelast" | [_] -> [] | e::l -> e :: removelast l let rec split_last l = let rec spl accu = function | [] -> failwith "split_last" | [e] -> rev accu, e | e::l -> spl (e :: accu) l in spl [] l let iter_assoc_val f l = iter (fun (_,v) -> f v) l let map_assoc_val f l = map (fun (k,v) -> k, f v) l let assoc_or_fail e l = try assoc e l with Not_found -> failwith "assoc failed" let assoc_by is_same e l = find_some (fun (a,b) -> if is_same e a then Some b else None) l let rec update_assoc_by is_same f e = function | [] -> raise Not_found | (a,b) :: l when is_same e a -> (a, f b) :: l | (a,b) :: l -> (a,b) :: update_assoc_by is_same f e l let update_assoc f e = update_assoc_by (=) f e let rec update_assoc_by_with_default default is_same f e = function | [] -> [ e, f default ] | (a,b) :: l when is_same e a -> (a, f b) :: l | (a,b) :: l -> (a,b) :: update_assoc_by_with_default default is_same f e l let update_all_assoc_by is_same f e l = map (fun (a,b) -> a, if is_same e a then f b else b) l let rec rassoc e = function | [] -> raise Not_found | (k,v) :: l -> if e = v then k else rassoc e l let rec all_assoc e = function | [] -> [] | (e',v) :: l when e=e' -> v :: all_assoc e l | _ :: l -> all_assoc e l let rec all_assoc_by is_same e = function | [] -> [] | (e',v) :: l when is_same e e' -> v :: all_assoc_by is_same e l | _ :: l -> all_assoc_by is_same e l let prepare_want_all_assoc l = map (fun n -> n, uniq (all_assoc n l)) (uniq (map fst l)) let prepare_want_all_assoc_by is_same l = map (fun n -> n, uniq_ is_same (all_assoc_by is_same n l)) (uniq_ is_same (map fst l)) let prepare_want_all_assoc_by_ is_same_a is_same_b l = map (fun n -> n, uniq_ is_same_b (all_assoc_by is_same_a n l)) (uniq_ is_same_a (map fst l)) let rec count_uniq = function | [] -> [] | e::l -> let has, l' = partition ((=) e) l in (e, length has + 1) :: count_uniq l' let rec repeat e = function | 0 -> [] | n -> e :: repeat e (n-1) let rec inits = function | [] -> [[]] | e::l -> [] :: map (fun l -> e::l) (inits l) let rec tails = function | [] -> [[]] | (_::xs) as xxs -> xxs :: tails xs let apply f x = f x;; let rec map3 f l1 l2 l3 = match (l1, l2, l3) with ([], [], []) -> [] | (a1::l1, a2::l2, a3::l3) -> let r = f a1 a2 a3 in r :: map3 f l1 l2 l3 | (_, _, _) -> invalid_arg "map3" let filter2 f l1 l2 = split (filter f (combine l1 l2)) let break_at f l = let rec b l1 = function | [] -> l1, [] | e::l2 -> if f e then (l1, e :: l2) else b (l1 @ [e]) l2 in b [] l let break v l = break_at ((=) v) l (* break_at_indice 0 [1;2] gives [], [1;2] break_at_indice 1 [1;2] gives [1], [2] *) let rec break_at_indice i l = if i = 0 then [], l else match l with | [] -> raise Not_found | e::l2 -> let a, b = break_at_indice (i-1) l2 in e::a, b let rev_nth e l = let rec rev_nth' i = function | [] -> raise Not_found | e'::_ when e'=e -> i | _::l -> rev_nth' (i+1) l in rev_nth' 0 l let rec getset_nth l i f = match l, i with | e::l', 0 -> f e :: l' | [], _ -> failwith "getset_nth" | e::l', _ -> e :: getset_nth l' (i - 1) f let set_nth l i v = getset_nth l i (fun _ -> v) let adjustModDown m n = n - (n mod m) let adjustModUp m n = adjustModDown m (n + m - 1) let hashtbl_find f h = let r = ref None in Hashtbl.iter (fun v c -> if f v c then r := Some v) h ; match !r with | Some v -> v | None -> raise Not_found let hashtbl_map f h = Hashtbl.iter (fun v c -> Hashtbl.replace h v (f v c)) h let hashtbl_values h = Hashtbl.fold (fun _ v l -> v :: l) h [] let hashtbl_keys h = Hashtbl.fold (fun k _ l -> k :: l) h [] let hashtbl_to_list h = Hashtbl.fold (fun k v l -> (k,v) :: l) h [] let hashtbl_collect f h = rev (Hashtbl.fold (fun k v l -> rev_append (f k v) l) h []) let hashtbl_exists f h = try Hashtbl.iter (fun v c -> if f v c then raise Found) h ; false with Found -> true let array_shift a = Array.sub a 1 (Array.length a - 1) let array_last_n n a = let len = Array.length a in Array.sub a (len - n) n let array_collect f a = Array.fold_left (fun l e -> f e @ l) [] a let rec lvector_product = let rec vector_product a b = match a with | [] -> [] | e::l -> map (fun e' -> e :: e') b :: vector_product l b in function | [] -> [] | [e] -> map (fun e -> [e]) e | e::l -> flatten (vector_product e (lvector_product l)) let vector_product2 a b = map (function | [a;b] -> a,b | _ -> failwith "vector_product2" ) (lvector_product [ a ; b ]) let rec transpose = function | [] :: _ -> [] | ll -> let l, ll' = split (map (function e::l -> e,l | _ -> raise Not_found) ll) in l :: transpose ll' let rec range min max = if min >= max then [] else min :: range (min + 1) max let rec filter_some_with f = function | [] -> [] | e :: l -> match f e with | None -> filter_some_with f l | Some e' -> e' :: filter_some_with f l let rec filter_some = function | [] -> [] | None :: l -> filter_some l | Some e :: l -> e :: filter_some l let rec difference l = function | [] -> l | e::l' -> difference (filter ((<>) e) l) l' let rec difference_ eq l = function | [] -> l | e::l' -> let l2 = filter (fun e' -> not (eq e e')) l in difference_ eq l2 l' let intersection_by is_same l1 l2 = filter (fun e -> exists (is_same e) l2) l1 let intersection_and_differences eq l1 l2 = let rec both inter l2_only = function | [], l2 -> inter, [], rev l2_only @ l2 | l1, [] -> inter, l1, rev l2_only | l1, e2 :: l2' -> match partition (eq e2) l1 with | [], _ -> both inter (e2 :: l2_only) (l1, l2') | _, l1' -> both (e2 :: inter) l2_only (l1', l2') in both [] [] (l1, l2) let rec triangularize = function | [] -> [] | e::l -> (e,l) :: triangularize l let diagonalize l = map_index (fun a i -> a, filter_index (fun _ j -> i <> j) l ) l let rec list_of_nonempty_sublists = function | [] -> [] | e :: l -> let l' = list_of_nonempty_sublists l in [e] :: l' @ map (fun l -> e :: l) l' let rec graph_is_sorted_by eq = function | [] -> true | (_,deps) :: l -> for_all (fun e -> try let _ = assoc_by eq e l in false with Not_found -> true) deps && graph_is_sorted_by eq l let graph_closure_by eq graph = let err = ref None in try let graph_rev = collect (fun (i, l) -> map (fun e -> (e, i)) l) graph in let bothway = map (fun (i,l) -> i, (l, all_assoc_by eq i graph_rev)) graph in let closed = fold_left (fun graph j -> let next, prev = assoc_by eq j graph in let graph2 = fold_left (fun graph i -> if member_ eq i next then (err := Some(j,i); raise GraphSort_circular_deps) else update_assoc_by eq (fun (i_next,i_prev) -> i_next @ next, i_prev) i graph ) graph (filter (fun a -> not (eq a j)) prev) in let graph3 = fold_left (fun graph k -> if member_ eq k prev then (err := Some(j,k); raise GraphSort_circular_deps) else update_assoc_by eq (fun (k_next,k_prev) -> k_next, k_prev @ prev) k graph ) graph2 (filter (fun a -> not (eq a j)) next) in graph3 ) bothway (map fst bothway) in Or_some (map (fun (e,(next,_)) -> e, uniq_ eq next) closed) with GraphSort_circular_deps -> Or_error (some !err) let rec graph_sort_by eq l = let cmp (_, deps_a) (b, _) = if member_ eq b deps_a then 1 else -1 in let rec sort_it = function | [] -> [] | [e] -> [e] | e::l -> let l' = sort_it l in let gt, lt = break_at (fun ((_, deps) as e') -> deps = [] or cmp e e' = 1) l' in gt @ [e] @ lt in map_or_option (fun l' -> let l_sorted = rev (sort_it l') in if not (graph_is_sorted_by eq l_sorted) then internal_error "graph_sort failed" else l_sorted ) (graph_closure_by eq l) let int_sort l = sort (fun a b -> a - b) l let str_begins_with s prefix = String.sub s 0 (min (String.length s) (String.length prefix)) = prefix let rec strstr s subs = let len_s, len_subs = String.length s, String.length subs in let rec rec_ i = let i' = String.index_from s i subs.[0] in if i' + len_subs <= len_s then if String.sub s i' len_subs = subs then i' else rec_ (i' + 1) else raise Not_found in rec_ 0 let str_contains s subs = try let _ = strstr s subs in true with Not_found -> false let str_ends_with s suffix = let len = min (String.length s) (String.length suffix) in String.sub s (String.length s - len) len = suffix let chop = function | "" -> "" | s -> String.sub s 0 (String.length s - 1) let chomps s = let i = ref (String.length s - 1) in while !i >= 0 && (s.[!i] = ' ' || s.[!i] = '\t') do decr i done ; String.sub s 0 (!i+1) let rec times e = function | 0 -> [] | n -> e :: times e (n-1) let skip_n_char_ beg end_ s = let full_len = String.length s in if beg < full_len && full_len - beg - end_ > 0 then String.sub s beg (full_len - beg - end_) else "" let skip_n_char n s = skip_n_char_ n 0 s let rec non_index_from s beg c = if s.[beg] = c then non_index_from s (beg+1) c else beg let non_index s c = non_index_from s 0 c let rec non_rindex_from s beg c = if s.[beg] = c then non_rindex_from s (beg-1) c else beg let non_rindex s c = non_rindex_from s (String.length s - 1) c let rec explode_string = function | "" -> [] | s -> (String.get s 0) :: explode_string (String.sub s 1 (String.length s - 1)) let count_matching_char s c = let rec count_matching_char_ nb i = try let i' = String.index_from s i c in count_matching_char_ (nb+1) (i'+1) with Not_found -> nb in count_matching_char_ 0 0 let is_uppercase c = Char.lowercase c <> c let is_lowercase c = Char.uppercase c <> c let char_is_alphanumerical c = let i = Char.code c in Char.code 'a' <= i && i <= Char.code 'z' || Char.code 'A' <= i && i <= Char.code 'Z' || Char.code '0' <= i && i <= Char.code '9' let char_is_alphanumerical_ c = let i = Char.code c in Char.code 'a' <= i && i <= Char.code 'z' || Char.code 'A' <= i && i <= Char.code 'Z' || Char.code '0' <= i && i <= Char.code '9' || c = '_' let char_is_alpha c = let i = Char.code c in Char.code 'a' <= i && i <= Char.code 'z' || Char.code 'A' <= i && i <= Char.code 'Z' let char_is_number c = let i = Char.code c in Char.code '0' <= i && i <= Char.code '9' let rec string_forall_with f i s = try f s.[i] && string_forall_with f (i+1) s with Invalid_argument _ -> true let starts_with_non_lowercase s = s <> "" && s.[0] <> '_' && not (is_lowercase s.[0]) let rec fold_lines f init chan = try let line = input_line chan in fold_lines f (f init line) chan with End_of_file -> init let readlines chan = List.rev (fold_lines (fun l e -> e::l) [] chan) let rec updir dir nb = if nb = 0 then dir else match dir with | "." -> String.concat "/" (times ".." nb) | _ -> if Filename.basename dir = ".." then dir ^ "/" ^ String.concat "/" (times ".." nb) else updir (Filename.dirname dir) (nb-1) let split_at c s = let rec split_at_ accu i = try let i' = String.index_from s i c in split_at_ (String.sub s i (i' - i) :: accu) (i'+1) with Not_found -> rev (skip_n_char i s :: accu) in split_at_ [] 0 let split_at2 c1 c2 s = let rec split_at2_ accu i i2 = try let i3 = String.index_from s i2 c1 in if s.[i3+1] = c2 then split_at2_ (String.sub s i (i3 - i) :: accu) (i3+2) (i3+2) else split_at2_ accu i i3 with Not_found | Invalid_argument _ -> rev (skip_n_char i s :: accu) in split_at2_ [] 0 0 let words s = let rec words_ accu i s = try let i2 = non_index_from s i ' ' in try let i3 = String.index_from s i2 ' ' in words_ (String.sub s i2 (i3 - i2) :: accu) (i3+1) s with Not_found -> rev (skip_n_char i2 s :: accu) with Invalid_argument _ -> rev accu in collect (words_ [] 0) (split_at '\n' s) let to_CamelCase s_ = let l = ref [] in let s = String.copy s_ in for i = 1 to String.length s - 1 do if is_uppercase (String.unsafe_get s i) && is_lowercase (String.unsafe_get s (i-1)) then ( String.set s i (Char.lowercase (String.get s i)) ; l := i :: !l ) done ; if !l = [] then None else let offset, s' = fold_left (fun (offset, s') i -> i, s' ^ String.sub s offset (i-offset) ^ "_" ) (0, "") (rev !l) in Some (s' ^ String.sub s offset (String.length s - offset)) let (string_of_ref : 'a ref -> string) = fun r -> Printf.sprintf "0x%x" (Obj.magic r : int) let print_endline_flush_quiet = ref false let print_endline_flush s = if not !print_endline_flush_quiet then (print_endline s ; flush stdout) let is_int n = n = floor n (* total order *) let rec compare_lists cmp l1 l2 = match l1, l2 with | [], [] -> 0 | [], _ -> -1 | _, [] -> 1 | e1::l1, e2::l2 -> match cmp e1 e2 with | 0 -> compare_lists cmp l1 l2 | v -> v let compare_best a b = match a, b with | 0, 0 -> 0 | 1, 1 | 1, 0 | 0, 1 -> 1 | -1, -1 | -1, 0 | 0, -1 -> -1 | 1, -1 | -1, 1 -> raise Not_comparable | _ -> failwith "uh?" (* partial order *) let combine_comparison_list l = fold_left compare_best 0 l let min_with_cmp less_than a b = if less_than a b then a else if less_than b a then b else raise Not_comparable let max_with_cmp less_than a b = if less_than a b then b else if less_than b a then a else raise Not_comparable let rec fold_left2_compare f e l1 l2 = match l1, l2 with | [], [] -> e | e1::l1, e2::l2 -> fold_left2_compare f (f e e1 e2) l1 l2 | _ -> raise Not_comparable let rec exists_compare cmp = function | [] -> raise Not_comparable | e :: l -> try cmp e with Not_comparable -> exists_compare cmp l let forall_compare cmp = fold_left (fun n e -> compare_best n (cmp e)) 0 let forall2_compare cmp = fold_left2_compare (fun n e1 e2 -> compare_best n (cmp e1 e2)) 0 let exists2_compare left_dropping cmp l1 l2 = let rec forall_compare_ n = function | [], [] -> n | _, [] -> compare_best n left_dropping | [], _ -> compare_best n (-left_dropping) | e1::l1, e2::l2 -> match try Some (cmp e1 e2) with Not_comparable -> None with | Some n' -> forall_compare_ (compare_best n n') (l1, l2) | None -> if n = left_dropping then forall_compare_ left_dropping (l1, e2::l2) else if n = -left_dropping then forall_compare_ (-left_dropping) (e1::l1, l2) else (* need to try both *) try forall_compare_ left_dropping (l1, e2::l2) with Not_comparable -> forall_compare_ (-left_dropping) (e1::l1, l2) in forall_compare_ 0 (l1, l2) let rec compare_sorted_sets is_same l1 l2 = match l1, l2 with | [], [] -> 0 | [], _ -> -1 | _, [] -> 1 | e1::l1, e2::l2 -> if is_same e1 e2 then compare_sorted_sets is_same l1 l2 else raise Not_found let scan_list_while_modifying f l = let rec scan_list_while_modifying_ prev = function | [] -> prev | e :: next -> let prev', next' = some_or (f prev next e) (prev @ [e], next) in scan_list_while_modifying_ prev' next' in scan_list_while_modifying_ [] l let bools2compare = function | true, true -> 0 | true, false -> -1 | false, true -> 1 | _ -> raise Not_comparable let lpush l e = l := e :: !l (* let is_greater2compare is_greater a b = match is_greater a b, is_greater b a with *) module OrderedString = struct type t = string let compare = compare end;; module StringSet = Set.Make(OrderedString);; let stringSet_to_list = StringSet.elements let stringSet_add set e = StringSet.add e set let stringSet_difference = StringSet.diff let list_to_StringSet l = fold_left stringSet_add StringSet.empty l id='n643' href='#n643'>643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
open Stack
open List

exception Found
exception Not_comparable
exception GraphSort_circular_deps

type ('a, 'b) either = Left of 'a | Right of 'b
type ('a, 'b) or_option = Or_some of 'a | Or_error of 'b

(**********************************************************************************)

let internal_error s = failwith ("internal error: " ^ s)

let id x = x
let double a = a,a
let swap (x,y) = (y,x)
let safe_tl l = try tl l with _ -> []
let fstfst ((e, _), _) = e
let sndfst ((_, e), _) = e
let fstsnd (_, (e, _)) = e
let sndsnd (_, (_, e)) = e

let fst3 (e, _, _) = e
let snd3 (_, e, _) = e
let ter3 (_, _, e) = e
let sndter3 (_, a, b) = (a, b)

let o f g x = f (g x)
let curry f x y = f (x,y)
let uncurry f (x, y) = f x y

let is_int n = ceil n = n

let uncons = function
  | [] -> failwith "uncons"
  | e::l -> e,l

let has_env var = 
  try 
    let _ = Sys.getenv var in true
  with Not_found -> false

let some = function 
  | Some e -> e
  | None -> failwith "some"

let some_or = function
  | None -> id
  | Some e -> fun _ -> e

let option2l = function
  | None -> []
  | Some e -> [e]

let prefer_some f a b =
  match a, b with
  | Some a, Some b -> Some (f a b)
  | None, _ -> b
  | _, None -> a

let rec collect_accu f accu = function
  | [] -> accu
  | e::l -> collect_accu f (rev_append (f e) accu) l

let collect f l = rev (collect_accu f [] l)

let merge_some merge a b = 
  match a,b with
  | None, None -> None
  | _, None -> a
  | None, _ -> b
  | Some(a), Some(b) -> Some(merge a b)

let rec uniq = function
  | [] -> []
  | e::l -> if mem e l then uniq l else e :: uniq l

let rec uniq_ eq = function
  | [] -> []
  | e::l -> 
      try 
	let _ = find (eq e) l in
	uniq_ eq l
      with Not_found -> e :: uniq_ eq l

let rec non_uniq = function
  | [] -> []
  | e::l -> if mem e l then e :: non_uniq l else non_uniq l

let rec member_ eq e = function
  | [] -> false
  | e'::l -> if eq e e' then true else member_ eq e l

let rec find_some p = function
  | [] -> raise Not_found
  | x :: l -> 
      match p x with
      |	Some v -> v
      |	None -> find_some p l

let fold_left1 f = function
  | [] -> failwith "fold_left1"
  | e :: l -> fold_left f e l

let find_index e l =
  let rec find_index_ i = function
    | [] -> raise Not_found
    | e'::l -> if e=e' then i else find_index_ (i+1) l
  in
  find_index_ 0 l

let rec find_some_ p = function
  | [] -> None
  | x :: l -> 
      match p x with
      |	Some v -> Some v
      |	None -> find_some_ p l

let rec fpartition p l =
  let rec part yes no = function
  | [] -> (rev yes, rev no)
  | x :: l -> 
      (match p x with
      |	None -> part yes (x :: no) l
      |	Some v -> part (v :: yes) no l) in
  part [] [] l

let partition_either f l =
  let rec part_either left right = function
  | [] -> (rev left, rev right)
  | x :: l -> 
      (match f x with
      |	Left  e -> part_either (e :: left) right l
      |	Right e -> part_either left (e :: right) l) in
  part_either [] [] l

let rec keep_best f = 
  let rec partition e = function
    | [] -> e, []
    | e' :: l ->
	match f(e,e') with
	| None -> let (e'', l') = partition e l in e'', e' :: l'
	| Some e'' -> partition e'' l
  in function
  | [] -> []
  | e::l -> 
      let (e', l') = partition e l in
      e' :: keep_best f l'

let rec keep_bests f l = 
  let rec once e unchanged = function
    | [] -> None
    | e' :: l ->
	match f(e,e') with
	| None -> once e (e' :: unchanged) l
	| Some e'' -> Some(e'', unchanged @ l)
  in
  let rec as_many_as_possible e l =
    match once e [] l with
    | None -> None
    | Some(e', l') -> Some(some_or (as_many_as_possible e' l') (e', l'))
  in
  let rec try_with e l_done l_next =
    match as_many_as_possible e l_next with
    | None -> try_with_next (e :: l_done) l_next
    | Some(e2, l_next2) -> 
	match as_many_as_possible e2 l_done with
	| None -> try_with_next (e2 :: l_done) l_next2
	| Some(e3, l_done2) -> try_with e3 l_done2 l_next2
  and try_with_next l_done = function
    | [] -> rev l_done
    | e::l_next -> try_with e l_done l_next
  in
  try_with_next [] l

let rec fold_right1 f = function
  | [] -> failwith "fold_right1"
  | [e] -> e
  | e::l -> f e (fold_right1 f l)

let rec for_all2_ p l1 l2 =
  match (l1, l2) with
    ([], []) -> true
  | (a1::l1, a2::l2) -> p a1 a2 && for_all2_ p l1 l2
  | (_, _) -> false

let rec for_all2_true p l1 l2 =
  match (l1, l2) with
  | (a1::l1, a2::l2) -> p a1 a2 && for_all2_true p l1 l2
  | (_, _) -> true

let maxl l = fold_right1 max l
  
let rec stack2list s =
  let l = ref [] in
  Stack.iter (fun e -> l := e :: !l) s ;
  !l
  
let rec stack_exists f s =
  try
    Stack.iter (fun e -> if f e then raise Found) s ;
    false
  with Found -> true

let rec queue2list q = rev (Queue.fold (fun b a -> a :: b) [] q)

let rec fix_point f p =
  let p' = f p in
  if p = p' then p else fix_point f p'

let rec fix_point_withenv f env p =
  let p', env' = f env p in
  if p = p' then (p, env') else fix_point_withenv f env' p'

let rec fix_point_ nb f p =
  let p' = f p in
  if p = p' then p, nb else fix_point_ (nb+1) f p'

let rec group_by_2 = function
  | [] -> []
  | a :: b :: l -> (a, b) :: group_by_2 l
  | _ -> failwith "group_by_2"

(*
let rec lfix_point f e =
  let e' = f(e) in
  if e = e' then e :: lfix_point f e' else [e]
*)

let do0_withenv doit f env l =
  let r_env = ref env in
  doit (fun e -> r_env := f !r_env e) l ;
  !r_env

let do0_withenv2 doit f env l =
  let r_env = ref env in
  doit (fun e e' -> r_env := f !r_env e e') l ;
  !r_env

let do_withenv doit f env l =
  let r_env = ref env in
  let l' = doit (fun e -> 
    let e', env' = f !r_env e in
    r_env := env' ; e'
  ) l in
  l', !r_env

let do2_withenv doit f env l1 l2 =
  let r_env = ref env in
  let l' = doit (fun e1 e2 -> 
    let e', env' = f !r_env e1 e2 in
    r_env := env' ; e'
  ) l1 l2 in
  l', !r_env

let do_collect doit f l1 =
  let l = ref [] in
  doit (fun i t -> l := f i t @ !l) l1 ;
  !l

let map_withitself f l =
  let rec map_withitself_ done_ = function
    | [] -> done_
    | e :: l -> 
	let e' = f (done_ @ e :: l) e in
	map_withitself_ (done_ @ [ e' ]) l
  in map_withitself_ [] l

let map_t2 f (x,y) = f x, f y
let map_t3 f (x,y,z) = f x, f y, f z
let map_option f = function
  | Some e -> Some (f e)
  | None -> None
let map_optionoption f = function
  | Some e -> f e
  | None -> None
let t2_option2option_t2 = function
  | (Some x, Some y) -> Some(x,y)
  | _ -> None
let rec l_option2option_l = function
  | [] -> Some []
  | None :: _l -> None
  | Some e :: l -> map_option (fun l -> e :: l) (l_option2option_l l)
let map_option_env f (e, env) = map_option f e, env

let t2_to_list (a,b) = [ a ; b ]
let t3_to_list (a,b,c) = [ a ; b ; c ]

let if_some bool val_ = if bool then Some val_ else None

let rec fold_left_option f val_ = function
  | [] -> Some val_
  | e::l ->
      match f val_ e with
      |	None -> None
      |	Some val_' -> fold_left_option f val_' l

let collect_some_withenv f env l = 
  let rec collect accu env = function
    | [] -> rev accu, env
    | e::l -> 
	let e', env' = f env e in
	let accu' = 
	  match e' with 
	  | Some e' -> e'::accu 
	  | None -> accu in
	collect accu' env' l
  in collect [] env l
	  
let for_all_option_withenv remap f env l =
  let rec for_all env accu = function
    | [] -> Some(remap (rev accu)), env
    | e::l ->
	(match f env e with
	| None, env' -> None, env'
	| Some e', env' -> for_all env' (e' :: accu) l)
  in
  for_all env [] l

let for_all2_option_withenv remap f env la lb =
  let rec for_all env accu = function
    | [], [] -> Some(remap (rev accu)), env
    | a::la, b::lb ->
	(match f env a b with
	| None, env' -> None, env'
	| Some ab, env' -> for_all env' (ab :: accu) (la, lb))
    | _ -> None, env
  in
  for_all env [] (la, lb)

let map_or_option f = function
  | Or_some e -> Or_some (f e)
  | Or_error err -> Or_error err

let map_index f l =
  let rec map_ n = function
    | [] -> []
    | e::l -> f e n :: map_ (n+1) l
  in map_ 0 l

let filter_index f l =
  let rec filter_ n = function
    | [] -> []
    | e::l -> 
	let l' = filter_ (n+1) l in
	if f e n then e :: l' else l'
  in filter_ 0 l

let iter_index f l =
  let rec iter_ n = function
    | [] -> ()
    | e::l -> f e n ; iter_ (n+1) l
  in iter_ 0 l

let map_fst f (x, y) = f x, y
let map_snd f (x, y) = x, f y

let map_withenv      f env e = do_withenv map f env e
let find_withenv     f env e = do_withenv find f env e
let filter_withenv   f env e = do_withenv filter f env e
let exists_withenv   f env e = do_withenv exists f env e
let map_t2_withenv   f env e = do_withenv map_t2 f env e
let for_all_withenv  f env e = do_withenv for_all f env e
let collect_withenv  f env e = do_withenv collect f env e
let partition_either_withenv f env e = do_withenv partition_either f env e

let map2_withenv     f env l1 l2 = do2_withenv map2 f env l1 l2
let for_all2_withenv f env l1 l2 = do2_withenv for_all2 f env l1 l2

let rec take n l =
  if n = 0 then []
  else match l with
  | [] -> raise Not_found
  | e::l -> e :: take (n-1) l
let last_n n l = rev (take n (rev l))
let last l = hd (last_n 1 l)

let rec skipfirst e = function
  | [] -> []
  | e'::l when e = e' -> skipfirst e l
  | l -> l

let rec removelast = function
  | [] -> failwith "removelast"
  | [_] -> []
  | e::l -> e :: removelast l

let rec split_last l = 
  let rec spl accu = function
  | [] -> failwith "split_last"
  | [e] -> rev accu, e
  | e::l -> spl (e :: accu) l
  in spl [] l

let iter_assoc_val f l = iter (fun (_,v) -> f v) l
let map_assoc_val f l = map (fun (k,v) -> k, f v) l

let assoc_or_fail e l =
  try assoc e l with Not_found -> failwith "assoc failed"

let assoc_by is_same e l = 
  find_some (fun (a,b) -> if is_same e a then Some b else None) l

let rec update_assoc_by is_same f e = function
  | [] -> raise Not_found
  | (a,b) :: l when is_same e a -> (a, f b) :: l
  | (a,b) :: l -> (a,b) :: update_assoc_by is_same f e l

let update_assoc f e = update_assoc_by (=) f e

let rec update_assoc_by_with_default default is_same f e = function
  | [] -> [ e, f default ]
  | (a,b) :: l when is_same e a -> (a, f b) :: l
  | (a,b) :: l -> (a,b) :: update_assoc_by_with_default default is_same f e l

let update_all_assoc_by is_same f e l =
  map (fun (a,b) -> a, if is_same e a then f b else b) l

let rec rassoc e = function
  | [] -> raise Not_found
  | (k,v) :: l -> if e = v then k else rassoc e l

let rec all_assoc e = function
  | [] -> []
  | (e',v) :: l when e=e' -> v :: all_assoc e l
  | _ :: l -> all_assoc e l

let rec all_assoc_by is_same e = function
  | [] -> []
  | (e',v) :: l when is_same e e' -> v :: all_assoc_by is_same e l
  | _ :: l -> all_assoc_by is_same e l

let prepare_want_all_assoc l =
  map (fun n -> n, uniq (all_assoc n l)) (uniq (map fst l))

let prepare_want_all_assoc_by is_same l =
  map (fun n -> n, uniq_ is_same (all_assoc_by is_same n l)) (uniq_ is_same (map fst l))

let prepare_want_all_assoc_by_ is_same_a is_same_b l =
  map (fun n -> n, uniq_ is_same_b (all_assoc_by is_same_a n l)) (uniq_ is_same_a (map fst l))

let rec count_uniq = function
  | [] -> []
  | e::l -> 
      let has, l' = partition ((=) e) l in
      (e, length has + 1) :: count_uniq l'

let rec repeat e = function
  | 0 -> []
  | n -> e :: repeat e (n-1)

let rec inits = function
  | [] -> [[]]
  | e::l -> [] :: map (fun l -> e::l) (inits l)
let rec tails = function
  | [] -> [[]]
  | (_::xs) as xxs -> xxs :: tails xs

let apply f x = f x;;

let rec map3 f l1 l2 l3 =
  match (l1, l2, l3) with
    ([], [], []) -> []
  | (a1::l1, a2::l2, a3::l3) -> let r = f a1 a2 a3 in r :: map3 f l1 l2 l3
  | (_, _, _) -> invalid_arg "map3"

let filter2 f l1 l2 =
  split (filter f (combine l1 l2))

let break_at f l =
  let rec b l1 = function
  | [] -> l1, []
  | e::l2 -> if f e then (l1, e :: l2) else b (l1 @ [e]) l2
  in b [] l
let break v l = break_at ((=) v) l

(* break_at_indice 0 [1;2] gives [], [1;2]
   break_at_indice 1 [1;2] gives [1], [2]
 *)
let rec break_at_indice i l =
  if i = 0 then [], l else
   match l with
   | [] -> raise Not_found
   | e::l2 ->
     let a, b = break_at_indice (i-1) l2 in
     e::a, b

let rev_nth e l =
  let rec rev_nth' i = function
  | [] -> raise Not_found
  | e'::_ when e'=e -> i
  | _::l -> rev_nth' (i+1) l
  in  rev_nth' 0 l

let rec getset_nth l i f =
  match l, i with
  | e::l', 0 -> f e :: l'
  | [], _ -> failwith "getset_nth"
  | e::l', _ -> e :: getset_nth l' (i - 1) f

let set_nth l i v = getset_nth l i (fun _ -> v)
    
let adjustModDown m n = n - (n mod m)
let adjustModUp m n = adjustModDown m (n + m - 1)


let hashtbl_find f h =
  let r = ref None in
  Hashtbl.iter (fun v c -> if f v c then r := Some v) h ;
  match !r with
  | Some v -> v
  | None -> raise Not_found

let hashtbl_map f h = Hashtbl.iter (fun v c -> Hashtbl.replace h v (f v c)) h

let hashtbl_values  h = Hashtbl.fold (fun _ v l -> v :: l) h []
let hashtbl_keys    h = Hashtbl.fold (fun k _ l -> k :: l) h []
let hashtbl_to_list h = Hashtbl.fold (fun k v l -> (k,v) :: l) h []

let hashtbl_collect f h =
  rev (Hashtbl.fold (fun k v l -> rev_append (f k v) l) h [])

let hashtbl_exists f h =
  try
    Hashtbl.iter (fun v c -> if f v c then raise Found) h ;
    false
  with Found -> true

let memoize f =
  let hash = Hashtbl.create 16 in
  fun k ->
    try Hashtbl.find hash k
    with Not_found ->
      let v = f k in
      Hashtbl.add hash k v ; v

let array_shift a = Array.sub a 1 (Array.length a - 1)
let array_last_n n a = 
  let len = Array.length a in
  Array.sub a (len - n) n

let array_collect f a = Array.fold_left (fun l e -> f e @ l) [] a

let rec lvector_product = 
  let rec vector_product a b = match a with
  | [] -> []
  | e::l -> map (fun e' -> e :: e') b :: vector_product l b
  in function
  | [] -> []
  | [e] -> map (fun e -> [e]) e
  | e::l -> flatten (vector_product e (lvector_product l))

let vector_product2 a b =
  map (function
  | [a;b] -> a,b
  | _ -> failwith "vector_product2"
  ) (lvector_product [ a ; b ])

let rec transpose = function
  | [] :: _ -> []
  | ll -> 
      let l, ll' = split (map (function e::l -> e,l | _ -> raise Not_found) ll) in
      l :: transpose ll'

let rec range min max =
  if min >= max then [] else min :: range (min + 1) max

let sum l = List.fold_left (+) 0 l

let rec filter_some_with f = function
  | [] -> []
  | e :: l -> 
      match f e with
      |	None -> filter_some_with f l
      | Some e' -> e' :: filter_some_with f l

let rec filter_some = function
  | [] -> []
  | None :: l -> filter_some l
  | Some e :: l -> e :: filter_some l

let rec difference l = function
  | [] -> l
  | e::l' -> difference (filter ((<>) e) l) l'

let rec difference_ eq l = function
  | [] -> l
  | e::l' -> 
      let l2 = filter (fun e' -> not (eq e e')) l in
      difference_ eq l2 l'

let intersection_by is_same l1 l2 = filter (fun e -> exists (is_same e) l2) l1

let intersection_and_differences eq l1 l2 =
  let rec both inter l2_only = function
    | [], l2 -> inter, [], rev l2_only @ l2
    | l1, [] -> inter, l1, rev l2_only
    | l1, e2 :: l2' ->
	match partition (eq e2) l1 with
	| [], _ -> both inter (e2 :: l2_only) (l1, l2')
	| _, l1' -> both (e2 :: inter) l2_only (l1', l2')
  in both [] [] (l1, l2)

let rec triangularize = function
  | [] -> []
  | e::l -> (e,l) :: triangularize l

let diagonalize l =
  map_index (fun a i ->
    a, filter_index (fun _ j -> i <> j) l
  ) l

let rec list_of_nonempty_sublists = function
  | [] -> []
  | e :: l -> 
      let l' = list_of_nonempty_sublists l in
      [e] :: l' @ map (fun l -> e :: l) l'

let rec graph_is_sorted_by eq = function
  | [] -> true
  | (_,deps) :: l -> 
      for_all (fun e -> try let _ = assoc_by eq e l in false with Not_found -> true) deps && graph_is_sorted_by eq l

let graph_closure_by eq graph =
  let err = ref None in
  try
    let graph_rev = collect (fun (i, l) -> map (fun e -> (e, i)) l) graph in
    let bothway = map (fun (i,l) -> i, (l, all_assoc_by eq i graph_rev)) graph in
    let closed = fold_left (fun graph j ->
        let next, prev = assoc_by eq j graph in
        let graph2 = fold_left (fun graph i ->
        if member_ eq i next then (err := Some(j,i); raise GraphSort_circular_deps) else
        update_assoc_by eq (fun (i_next,i_prev) -> i_next @ next, i_prev) i graph
      ) graph (filter (fun a -> not (eq a j)) prev) in
      let graph3 = fold_left (fun graph k ->
        if member_ eq k prev then (err := Some(j,k); raise GraphSort_circular_deps) else
        update_assoc_by eq (fun (k_next,k_prev) -> k_next, k_prev @ prev) k graph
      ) graph2 (filter (fun a -> not (eq a j)) next) in
      graph3
    ) bothway (map fst bothway) in
    Or_some (map (fun (e,(next,_)) -> e, uniq_ eq next) closed)
  with GraphSort_circular_deps ->
    Or_error (some !err)

let rec graph_sort_by eq l =
  let cmp (_, deps_a) (b, _) = if member_ eq b deps_a then 1 else -1 in 
  let rec sort_it = function
    | [] -> []
    | [e] -> [e]
    | e::l ->
	let l' = sort_it l in
	let gt, lt = break_at (fun ((_, deps) as e') -> deps = [] or cmp e e' = 1) l' in
	gt @ [e] @ lt
  in 
  map_or_option (fun l' ->
    let l_sorted = rev (sort_it l') in
    if not (graph_is_sorted_by eq l_sorted) then internal_error "graph_sort failed" else
    l_sorted
  ) (graph_closure_by eq l)

let int_sort l = sort (fun a b -> a - b) l

let str_begins_with s prefix =
  String.sub s 0 (min (String.length s) (String.length prefix)) = prefix

let rec strstr s subs =
  let len_s, len_subs = String.length s, String.length subs in
  let rec rec_ i =
    let i' = String.index_from s i subs.[0] in
    if i' + len_subs <= len_s then
      if String.sub s i' len_subs = subs then
	i'
      else
	rec_ (i' + 1)
    else
      raise Not_found
  in
  rec_ 0

let str_contains s subs =
  try
    let _ = strstr s subs in true
  with Not_found -> false

let str_ends_with s suffix =
  let len = min (String.length s) (String.length suffix) in
  String.sub s (String.length s - len) len = suffix

let chop = function
  | "" -> ""
  | s -> String.sub s 0 (String.length s - 1)

let chomps s =
  let i = ref (String.length s - 1) in
  while !i >= 0 && (s.[!i] = ' ' || s.[!i] = '\t') do decr i done ;
  String.sub s 0 (!i+1)

let rec times e = function
  | 0 -> []
  | n -> e :: times e (n-1)

let skip_n_char_ beg end_ s =
  let full_len = String.length s in
  if beg < full_len && full_len - beg - end_ > 0 
  then String.sub s beg (full_len - beg - end_)
  else ""
let skip_n_char n s = skip_n_char_ n 0 s

let rec non_index_from s beg c =
  if s.[beg] = c then non_index_from s (beg+1) c else beg
let non_index s c = non_index_from s 0 c

let rec non_rindex_from s beg c =
  if s.[beg] = c then non_rindex_from s (beg-1) c else beg
let non_rindex s c = non_rindex_from s (String.length s - 1) c

let rec explode_string = function
  | "" -> []
  | s -> (String.get s 0) :: explode_string (String.sub s 1 (String.length s - 1))

let count_matching_char s c =
  let rec count_matching_char_ nb i =
    try
      let i' = String.index_from s i c in
      count_matching_char_ (nb+1) (i'+1)
    with Not_found -> nb
  in
  count_matching_char_ 0 0

let is_uppercase c = Char.lowercase c <> c
let is_lowercase c = Char.uppercase c <> c