summaryrefslogtreecommitdiffstats
path: root/perl-install/run_program.pm
blob: 0f84b9087949c6656785283eed3fabe1d54a265a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
package run_program; # $Id$

use diagnostics;
use strict;
use c;

use MDK::Common;
use log;

1;

sub run_or_die {
    my ($name, @args) = @_;
    run($name, @args) or die "$name failed\n";
}
sub rooted_or_die {
    my ($root, $name, @args) = @_;
    rooted($root, $name, @args) or die "$name failed\n";
}

sub get_stdout {
    my ($name, @args) = @_;
    my @r;
    run($name, '>', \@r, @args) or return;
    wantarray() ? @r : join('', @r);
}
sub rooted_get_stdout {
    my ($root, $name, @args) = @_;
    my @r;
    rooted($root, $name, '>', \@r, @args) or return;
    wantarray() ? @r : join('', @r);
}

sub run { raw({}, @_) }

sub rooted {
    my ($root, $name, @args) = @_;
    raw({ root => $root }, $name, @args);
}

sub raw {
    my ($options, $name, @args) = @_;
    my $root = $options->{root} || '';
    my $real_name = ref($name) ? $name->[0] : $name;

    my ($stdout_raw, $stdout_mode, $stderr_raw, $stderr_mode);
    ($stdout_mode, $stdout_raw, @args) = @args if $args[0] =~ /^>>?$/;
    ($stderr_mode, $stderr_raw, @args) = @args if $args[0] =~ /^2>>?$/;

    my $args = $options->{sensitive_arguments} ? '<hidden arguments>' : join(' ', @args);
    log::explanations("running: $real_name $args" . ($root ? " with root $root" : ""));

    return if $root && $<;

    $root ? ($root .= '/') : ($root = '');
    
    my $tmpdir = sub {
	my $dir = $< != 0 ? "$ENV{HOME}/tmp" : -d '/root' ? '/root/tmp' : '/tmp';
	-d $dir or mkdir($dir, 0700);
	$dir;
    };
    my $stdout = $stdout_raw && (ref($stdout_raw) ? $tmpdir->() . "/.drakx-stdout.$$" : "$root$stdout_raw");
    my $stderr = $stderr_raw && (ref($stderr_raw) ? $tmpdir->() . "/.drakx-stderr.$$" : "$root$stderr_raw");

    #- checking if binary exist to avoid clobbering stdout file
    my $rname = $real_name =~ /(.*?)[\s\|]/ ? $1 : $real_name;    
    if (! ($rname =~ m!^/! 
	     ? -x "$root$rname" || $root && -l "$root$rname" #- handle non-relative symlink which can be broken when non-rooted
	     : whereis_binary($rname, $root))) {
	log::l("program not found: $real_name");
	return;
    }

    if (my $pid = fork()) {
	if ($options->{detach}) {
	    $pid;
	} else {
	    my $ok;
	    add2hash_($options, { timeout => 10 * 60 });
	    eval {
		local $SIG{ALRM} = sub { die "ALARM" };
		my $remaining = $options->{timeout} && $options->{timeout} ne 'never' &&  alarm($options->{timeout});
		waitpid $pid, 0;
		$ok = $? == -1 || ($? >> 8) == 0;
		alarm $remaining;
	    };
	    if ($@) {
		log::l("ERROR: killing runaway process (process=$real_name, pid=$pid, args=@args, error=$@)");
		kill 9, $pid;
		return;
	    }

	    if ($stdout_raw && ref($stdout_raw)) {	    
		if (ref($stdout_raw) eq 'ARRAY') { 
		    @$stdout_raw = cat_($stdout);
		} else { 
		    $$stdout_raw = cat_($stdout);
		}
		unlink $stdout;
	    }
	    if ($stderr_raw && ref($stderr_raw)) {
		if (ref($stderr_raw) eq 'ARRAY') { 
		    @$stderr_raw = cat_($stderr);
		} else { 
		    $$stderr_raw = cat_($stderr);
		}
		unlink $stderr;
	    }
	    $ok;
	}
    } else {
        if ($options->{setuid}) {
            require POSIX;
            $ENV{'LOGNAME'} = getpwuid($options->{setuid}) || $ENV{LOGNAME};
            POSIX::setuid($options->{setuid});
        }

	sub die_exit {
	    log::l($_[0]);
	    c::_exit(128);
	}
	if ($stderr && $stderr eq 'STDERR') {
	} elsif ($stderr) {
	    $stderr_mode =~ s/2//;
	    open STDERR, "$stderr_mode $stderr" or die_exit("run_program can not output in $stderr (mode `$stderr_mode')");
	} elsif ($::isInstall) {
	    open STDERR, ">> /tmp/ddebug.log" or open STDOUT, ">> /dev/tty7" or die_exit("run_program can not log, give me access to /tmp/ddebug.log");
	}
	if ($stdout && $stdout eq 'STDOUT') {
	} elsif ($stdout) {
	    open STDOUT, "$stdout_mode $stdout" or die_exit("run_program can not output in $stdout (mode `$stdout_mode')");
	} elsif ($::isInstall) {
	    open STDOUT, ">> /tmp/ddebug.log" or open STDOUT, ">> /dev/tty7" or die_exit("run_program can not log, give me access to /tmp/ddebug.log");
	}

	$root and chroot $root;
	chdir($options->{chdir} || "/");

	my $ok = ref $name ? do {
	    exec { $name->[0] } $name->[1], @args;
	} : do {
	    exec $name, @args;
	};
	if (!$ok) {
	    die_exit("exec of $real_name failed: $!");
	}
    }

}

# run in background a sub that give back data through STDOUT a la run_program::get_stdout but w/ arbitrary perl code instead of external program
package bg_command;

sub new {
    my ($class, $sub) = @_;
    my $o = bless {}, $class;
    if ($o->{pid} = open(my $fd, "-|")) {
        $o->{fd} = $fd;
        $o;
    } else {
        $sub->();
        c::_exit(0);
    }
}

sub DESTROY {
    my ($o) = @_;
    close $o->{fd} or warn "kid exited $?";
    waitpid $o->{pid}, 0;
}

1;

#- Local Variables:
#- mode:cperl
#- tab-width:8
#- End:
an> 0 }; static int real_mem_init(void) { void *m; int fd_zero; if (mem_info.ready) return 1; fd_zero = open("/dev/zero", O_RDONLY); if (fd_zero == -1) { perror("open /dev/zero"); return 0; } m = mmap((void *)REAL_MEM_BASE, REAL_MEM_SIZE, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd_zero, 0); if (m == (void *)-1) { perror("mmap /dev/zero"); close(fd_zero); return 0; } mem_info.ready = 1; mem_info.count = 1; mem_info.blocks[0].size = REAL_MEM_SIZE; mem_info.blocks[0].free = 1; return 1; } static void insert_block(int i) { memmove( mem_info.blocks + i + 1, mem_info.blocks + i, (mem_info.count - i) * sizeof(struct mem_block)); mem_info.count++; } static void delete_block(int i) { mem_info.count--; memmove( mem_info.blocks + i, mem_info.blocks + i + 1, (mem_info.count - i) * sizeof(struct mem_block)); } void * LRMI_alloc_real(int size) { int i; char *r = (char *)REAL_MEM_BASE; if (!mem_info.ready) return NULL; if (mem_info.count == REAL_MEM_BLOCKS) return NULL; size = (size + 15) & ~15; for (i = 0; i < mem_info.count; i++) { if (mem_info.blocks[i].free && size < mem_info.blocks[i].size) { insert_block(i); mem_info.blocks[i].size = size; mem_info.blocks[i].free = 0; mem_info.blocks[i + 1].size -= size; return (void *)r; } r += mem_info.blocks[i].size; } return NULL; } void LRMI_free_real(void *m) { int i; char *r = (char *)REAL_MEM_BASE; if (!mem_info.ready) return; i = 0; while (m != (void *)r) { r += mem_info.blocks[i].size; i++; if (i == mem_info.count) return; } mem_info.blocks[i].free = 1; if (i + 1 < mem_info.count && mem_info.blocks[i + 1].free) { mem_info.blocks[i].size += mem_info.blocks[i + 1].size; delete_block(i + 1); } if (i - 1 >= 0 && mem_info.blocks[i - 1].free) { mem_info.blocks[i - 1].size += mem_info.blocks[i].size; delete_block(i); } } #define DEFAULT_VM86_FLAGS (IF_MASK | IOPL_MASK) #define DEFAULT_STACK_SIZE 0x1000 #define RETURN_TO_32_INT 255 static struct { int ready; unsigned short ret_seg, ret_off; unsigned short stack_seg, stack_off; struct vm86_struct vm; } context = { 0 }; static inline void set_bit(unsigned int bit, void *array) { unsigned char *a = array; a[bit / 8] |= (1 << (bit % 8)); } static inline unsigned int get_int_seg(int i) { return *(unsigned short *)(i * 4 + 2); } static inline unsigned int get_int_off(int i) { return *(unsigned short *)(i * 4); } static inline void pushw(unsigned short i) { struct vm86_regs *r = &context.vm.regs; r->esp -= 2; *(unsigned short *)(((unsigned int)r->ss << 4) + r->esp) = i; } int LRMI_init(void) { void *m; int fd_mem; if (context.ready) return 1; if (!real_mem_init()) return 0; /* Map the Interrupt Vectors (0x0 - 0x400) + BIOS data (0x400 - 0x502) and the ROM (0xa0000 - 0x100000) */ fd_mem = open("/dev/mem", O_RDWR); if (fd_mem == -1) { perror("open /dev/mem"); return 0; } m = mmap((void *)0, 0x502, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd_mem, 0); if (m == (void *)-1) { perror("mmap /dev/mem"); return 0; } m = mmap((void *)0xa0000, 0x100000 - 0xa0000, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_SHARED, fd_mem, 0xa0000); if (m == (void *)-1) { perror("mmap /dev/mem"); return 0; } /* Allocate a stack */ m = LRMI_alloc_real(DEFAULT_STACK_SIZE); context.stack_seg = (unsigned int)m >> 4; context.stack_off = DEFAULT_STACK_SIZE; /* Allocate the return to 32 bit routine */ m = LRMI_alloc_real(2); context.ret_seg = (unsigned int)m >> 4; context.ret_off = (unsigned int)m & 0xf; ((unsigned char *)m)[0] = 0xcd; /* int opcode */ ((unsigned char *)m)[1] = RETURN_TO_32_INT; memset(&context.vm, 0, sizeof(context.vm)); /* Enable kernel emulation of all ints except RETURN_TO_32_INT */ memset(&context.vm.int_revectored, 0, sizeof(context.vm.int_revectored)); set_bit(RETURN_TO_32_INT, &context.vm.int_revectored); context.ready = 1; return 1; } static void set_regs(struct LRMI_regs *r) { context.vm.regs.edi = r->edi; context.vm.regs.esi = r->esi; context.vm.regs.ebp = r->ebp; context.vm.regs.ebx = r->ebx; context.vm.regs.edx = r->edx; context.vm.regs.ecx = r->ecx; context.vm.regs.eax = r->eax; context.vm.regs.eflags = DEFAULT_VM86_FLAGS; context.vm.regs.es = r->es; context.vm.regs.ds = r->ds; context.vm.regs.fs = r->fs; context.vm.regs.gs = r->gs; } static void get_regs(struct LRMI_regs *r) { r->edi = context.vm.regs.edi; r->esi = context.vm.regs.esi; r->ebp = context.vm.regs.ebp; r->ebx = context.vm.regs.ebx; r->edx = context.vm.regs.edx; r->ecx = context.vm.regs.ecx; r->eax = context.vm.regs.eax; r->flags = context.vm.regs.eflags; r->es = context.vm.regs.es; r->ds = context.vm.regs.ds; r->fs = context.vm.regs.fs; r->gs = context.vm.regs.gs; } #define DIRECTION_FLAG (1 << 10) static void em_ins(int size) { unsigned int edx, edi; edx = context.vm.regs.edx & 0xffff; edi = context.vm.regs.edi & 0xffff; edi += (unsigned int)context.vm.regs.ds << 4; if (context.vm.regs.eflags & DIRECTION_FLAG) { if (size == 4) asm volatile ("std; insl; cld" : "=D" (edi) : "d" (edx), "0" (edi)); else if (size == 2) asm volatile ("std; insw; cld" : "=D" (edi) : "d" (edx), "0" (edi)); else asm volatile ("std; insb; cld" : "=D" (edi) : "d" (edx), "0" (edi)); } else { if (size == 4) asm volatile ("cld; insl" : "=D" (edi) : "d" (edx), "0" (edi)); else if (size == 2) asm volatile ("cld; insw" : "=D" (edi) : "d" (edx), "0" (edi)); else asm volatile ("cld; insb" : "=D" (edi) : "d" (edx), "0" (edi)); } edi -= (unsigned int)context.vm.regs.ds << 4; context.vm.regs.edi &= 0xffff0000; context.vm.regs.edi |= edi & 0xffff; } static void em_rep_ins(int size) { unsigned int ecx, edx, edi; ecx = context.vm.regs.ecx & 0xffff; edx = context.vm.regs.edx & 0xffff; edi = context.vm.regs.edi & 0xffff; edi += (unsigned int)context.vm.regs.ds << 4; if (context.vm.regs.eflags & DIRECTION_FLAG) { if (size == 4) asm volatile ("std; rep; insl; cld" : "=D" (edi), "=c" (ecx) : "d" (edx), "0" (edi), "1" (ecx)); else if (size == 2) asm volatile ("std; rep; insw; cld" : "=D" (edi), "=c" (ecx) : "d" (edx), "0" (edi), "1" (ecx)); else asm volatile ("std; rep; insb; cld" : "=D" (edi), "=c" (ecx) : "d" (edx), "0" (edi), "1" (ecx)); } else { if (size == 4) asm volatile ("cld; rep; insl" : "=D" (edi), "=c" (ecx) : "d" (edx), "0" (edi), "1" (ecx)); else if (size == 2) asm volatile ("cld; rep; insw" : "=D" (edi), "=c" (ecx) : "d" (edx), "0" (edi), "1" (ecx)); else asm volatile ("cld; rep; insb" : "=D" (edi), "=c" (ecx) : "d" (edx), "0" (edi), "1" (ecx)); } edi -= (unsigned int)context.vm.regs.ds << 4; context.vm.regs.edi &= 0xffff0000; context.vm.regs.edi |= edi & 0xffff; context.vm.regs.ecx &= 0xffff0000; context.vm.regs.ecx |= ecx & 0xffff; } static void em_outs(int size) { unsigned int edx, esi; edx = context.vm.regs.edx & 0xffff; esi = context.vm.regs.esi & 0xffff; esi += (unsigned int)context.vm.regs.ds << 4; if (context.vm.regs.eflags & DIRECTION_FLAG) { if (size == 4) asm volatile ("std; outsl; cld" : "=S" (esi) : "d" (edx), "0" (esi)); else if (size == 2) asm volatile ("std; outsw; cld" : "=S" (esi) : "d" (edx), "0" (esi)); else asm volatile ("std; outsb; cld" : "=S" (esi) : "d" (edx), "0" (esi)); } else { if (size == 4) asm volatile ("cld; outsl" : "=S" (esi) : "d" (edx), "0" (esi)); else if (size == 2) asm volatile ("cld; outsw" : "=S" (esi) : "d" (edx), "0" (esi)); else asm volatile ("cld; outsb" : "=S" (esi) : "d" (edx), "0" (esi)); } esi -= (unsigned int)context.vm.regs.ds << 4; context.vm.regs.esi &= 0xffff0000; context.vm.regs.esi |= esi & 0xffff; } static void em_rep_outs(int size) { unsigned int ecx, edx, esi; ecx = context.vm.regs.ecx & 0xffff; edx = context.vm.regs.edx & 0xffff; esi = context.vm.regs.esi & 0xffff; esi += (unsigned int)context.vm.regs.ds << 4; if (context.vm.regs.eflags & DIRECTION_FLAG) { if (size == 4) asm volatile ("std; rep; outsl; cld" : "=S" (esi), "=c" (ecx) : "d" (edx), "0" (esi), "1" (ecx)); else if (size == 2) asm volatile ("std; rep; outsw; cld" : "=S" (esi), "=c" (ecx) : "d" (edx), "0" (esi), "1" (ecx)); else asm volatile ("std; rep; outsb; cld" : "=S" (esi), "=c" (ecx) : "d" (edx), "0" (esi), "1" (ecx)); } else { if (size == 4) asm volatile ("cld; rep; outsl" : "=S" (esi), "=c" (ecx) : "d" (edx), "0" (esi), "1" (ecx)); else if (size == 2) asm volatile ("cld; rep; outsw" : "=S" (esi), "=c" (ecx) : "d" (edx), "0" (esi), "1" (ecx)); else asm volatile ("cld; rep; outsb" : "=S" (esi), "=c" (ecx) : "d" (edx), "0" (esi), "1" (ecx)); } esi -= (unsigned int)context.vm.regs.ds << 4; context.vm.regs.esi &= 0xffff0000; context.vm.regs.esi |= esi & 0xffff; context.vm.regs.ecx &= 0xffff0000; context.vm.regs.ecx |= ecx & 0xffff; } static void em_inbl(unsigned char literal) { context.vm.regs.eax = inb(literal) & 0xff; } static void em_inb(void) { asm volatile ("inb (%w1), %b0" : "=a" (context.vm.regs.eax) : "d" (context.vm.regs.edx), "0" (context.vm.regs.eax)); } static void em_inw(void) { asm volatile ("inw (%w1), %w0" : "=a" (context.vm.regs.eax) : "d" (context.vm.regs.edx), "0" (context.vm.regs.eax)); } static void em_inl(void) { asm volatile ("inl (%w1), %0" : "=a" (context.vm.regs.eax) : "d" (context.vm.regs.edx)); } static void em_outbl(unsigned char literal) { outb(context.vm.regs.eax & 0xff, literal); } static void em_outb(void) { asm volatile ("outb %b0, (%w1)" : : "a" (context.vm.regs.eax), "d" (context.vm.regs.edx)); } static void em_outw(void) { asm volatile ("outw %w0, (%w1)" : : "a" (context.vm.regs.eax), "d" (context.vm.regs.edx)); } static void em_outl(void) { asm volatile ("outl %0, (%w1)" : : "a" (context.vm.regs.eax), "d" (context.vm.regs.edx)); } static int emulate(void) { unsigned char *insn; struct { unsigned int size : 1; unsigned int rep : 1; } prefix = { 0, 0 }; int i = 0; insn = (unsigned char *)((unsigned int)context.vm.regs.cs << 4); insn += context.vm.regs.eip; while (1) { if (insn[i] == 0x66) { prefix.size = 1 - prefix.size; i++; } else if (insn[i] == 0xf3) { prefix.rep = 1; i++; } else if (insn[i] == 0xf0 || insn[i] == 0xf2 || insn[i] == 0x26 || insn[i] == 0x2e || insn[i] == 0x36 || insn[i] == 0x3e || insn[i] == 0x64 || insn[i] == 0x65 || insn[i] == 0x67) { /* these prefixes are just ignored */ i++; } else if (insn[i] == 0x6c) { if (prefix.rep) em_rep_ins(1); else em_ins(1); i++; break; } else if (insn[i] == 0x6d) { if (prefix.rep) { if (prefix.size) em_rep_ins(4); else em_rep_ins(2); } else { if (prefix.size) em_ins(4); else em_ins(2); } i++; break; } else if (insn[i] == 0x6e) { if (prefix.rep) em_rep_outs(1); else em_outs(1); i++; break; } else if (insn[i] == 0x6f) { if (prefix.rep) { if (prefix.size) em_rep_outs(4); else em_rep_outs(2); } else { if (prefix.size) em_outs(4); else em_outs(2); } i++; break; } else if (insn[i] == 0xe4) { em_inbl(insn[i + 1]); i += 2; break; } else if (insn[i] == 0xe6) { em_outbl(insn[i + 1]); i += 2; break; } else if (insn[i] == 0xec) { em_inb(); i++; break; } else if (insn[i] == 0xed) { if (prefix.size) em_inl(); else em_inw(); i++; break; } else if (insn[i] == 0xee) { em_outb(); i++; break; } else if (insn[i] == 0xef) { if (prefix.size) em_outl(); else em_outw(); i++; break; } else return 0; } context.vm.regs.eip += i; return 1; } /* I don't know how to make sure I get the right vm86() from libc. The one I want is syscall # 113 (vm86old() in libc 5, vm86() in glibc) which should be declared as "int vm86(struct vm86_struct *);" in <sys/vm86.h>. This just does syscall 113 with inline asm, which should work for both libc's (I hope). */ #if !defined(USE_LIBC_VM86) static int lrmi_vm86(struct vm86_struct *vm) { int r; #if 1 asm volatile ( "pushl %%ebx\n\t" "movl %2, %%ebx\n\t" "int $0x80\n\t" "popl %%ebx" : "=a" (r) : "0" (113), "r" (vm)); #else asm volatile ( "int $0x80" : "=a" (r) : "0" (113), "b" (vm)); #endif return r; } #else #define lrmi_vm86 vm86 #endif static void debug_info(int vret) { int i; unsigned char *p; fputs("vm86() failed\n", stderr); fprintf(stderr, "return = 0x%x\n", vret); fprintf(stderr, "eax = 0x%08lx\n", context.vm.regs.eax); fprintf(stderr, "ebx = 0x%08lx\n", context.vm.regs.ebx); fprintf(stderr, "ecx = 0x%08lx\n", context.vm.regs.ecx); fprintf(stderr, "edx = 0x%08lx\n", context.vm.regs.edx); fprintf(stderr, "esi = 0x%08lx\n", context.vm.regs.esi); fprintf(stderr, "edi = 0x%08lx\n", context.vm.regs.edi); fprintf(stderr, "ebp = 0x%08lx\n", context.vm.regs.ebp); fprintf(stderr, "eip = 0x%08lx\n", context.vm.regs.eip); fprintf(stderr, "cs = 0x%04x\n", context.vm.regs.cs); fprintf(stderr, "esp = 0x%08lx\n", context.vm.regs.esp); fprintf(stderr, "ss = 0x%04x\n", context.vm.regs.ss); fprintf(stderr, "ds = 0x%04x\n", context.vm.regs.ds); fprintf(stderr, "es = 0x%04x\n", context.vm.regs.es); fprintf(stderr, "fs = 0x%04x\n", context.vm.regs.fs); fprintf(stderr, "gs = 0x%04x\n", context.vm.regs.gs); fprintf(stderr, "eflags = 0x%08lx\n", context.vm.regs.eflags); fputs("cs:ip = [ ", stderr);