Clone a node/computer using KA method Clone a computer over the network Goal of duplication is to easily deploy a computer over network without taking care of numbers of computer. In this documentation, we call golden node the node we want to clone. We can duplicate SCSI or IDE hard drive, and duplication support multiple filesystem (reiserfs, ext2, ext3, ext4, xfs, jfs). WARNING: all data on client nodes will be erased ! We ducplicate partitions of HDD' golden node, and the process will do a fdisk command on the client node, so ALL YOUR DATA will be erased on client nodes. KA method With KA method you can quickly duplicate a node using a desc file describing partitions. KA method only duplicate data on partitions, so if you have 80go HDD disk, and only 10go on it, KA only duplicates 10go, and not the whole disk. KA method doesn't not support RAID software. Drawbacks: KA method doesn't support RAID software you can only clone Linux filesystems (if you want to duplicate another kinf of FS, it's up to you to modify the scripts) HOW it works Steps The clone process works in three steps PXE boot to retrieve stage1: the computer boot on PXE mode, retrieve vmlinuz and an initrd image. The computer is in stage1 mode, and is able to get the stage2 throug KA. Network is up. get stage2: the computer gets the stage2 with the KA method. The stage2 contains all necessary tools to recognize your hardware (the most important things is to detect your HDD and your network card), and all necessary tools to finalize the cloning process. Duplication process: the computer auto-probes needed modules to be able to access the HDD. A basic log server is launched on the client node to be able to run command and get status of the KA duplication process. The computer reconfigure the modprobe.conf and restore the booloader (grub or lilo) Needed files All needed files are available in Mandriva Linux cooker. install/stage2/rescue.sqhfs: this is the stage2 file with all needed files to detect and probe modules, and launch the third step of the duplication process. This file will be used on the golden node. isolinux/alt0/vmlinuz: linux kernel, needed in the /var/lib/tftpboot/X86PC/linux/images/ directory of the PXE server isolinux/alt0/all.rdz: stage1 and all needed modules and tools. Step 1: PXE, TFTP, DHCPD services To easily clone a computer node, we use PXE technology to boot a kernel, and an initrd image wich contains all needed modules for network and media storage. Documentation about PXE can be found here: PXE doc. Please, keep in mind setting such services can DISTURB your current network architecture. PXE parameters on server Mandriva Linux installer supports various methods to install a computer. With PXE configuration file you can specify wich method you want to use to install your node, or add a specific option at boot prompt. Edit your default PXE configuration file to add your custom entry (/var/lib/tftpboot/X86PC/linux/pxelinux.cfg/default). PROMPT 1 DEFAULT local DISPLAY messages TIMEOUT 50 F1 help.txt label local LOCALBOOT 0 label kamethod KERNEL images/vmlinuz APPEND initrd=images/all.rdz ramdisk_size=64000 vga=788 \ automatic=method:ka,interface:eth0,network:dhcp root=/dev/ram3 rw kamethod At boot prompt no you can boot: DEFAULT local: default boot will be local one, change it with the name of a LABEL local: boot local kamethod: automatic mode, get stage2 through KA. Network interface is set to eth0. Auto setup the network with DHCP, and use the KA technology to launch the replication method. TFTP server TFTP server should be activated in /etc/xinetd.d/tftp file, and the xinetd service started. service tftp { disable= no socket_type= dgram protocol= udp wait= yes user= root server= /usr/sbin/in.tftpd server_args = -s /var/lib/tftpboot per_source= 11 cps= 100 2 flags= IPv4 } PXE configuration ,,,, service=X86PC,0,2,linux,Mandriva Linux x86 service=IA64PC,0,2,linux,Mandriva Linux IA64 service=X86PC,0,0,local,Local boot # tftpd base dir tftpdbase=/ # domain=guibland.com domain= ]]> DHCPD configuration IE of an /etc/dhcpd.conf configuration file. Change IPADDR_TFTP with the IP address of the TFTP serrver, and the NET value. Don't forget to adjust the domain-name and the domain-name-servers. ddns-update-style none; allow booting; allow bootp; authoritative; # Definition of PXE-specific options # Code 1: Multicast IP address of bootfile # Code 2: UDP port that client should monitor for MTFTP responses # Code 3: UDP port that MTFTP servers are using to listen for MTFTP requests # Code 4: Number of secondes a client must listen for activity before trying # to start a new MTFTP transfer # Code 5: Number of secondes a client must listen before trying to restart # a MTFTP transfer # define Option for the PXE class option space PXE; option PXE.mtftp-ip code 1 = ip-address; option PXE.mtftp-cport code 2 = unsigned integer 16; option PXE.mtftp-sport code 3 = unsigned integer 16; option PXE.mtftp-tmout code 4 = unsigned integer 8; option PXE.mtftp-delay code 5 = unsigned integer 8; option PXE.discovery-control code 6 = unsigned integer 8; option PXE.discovery-mcast-addr code 7 = ip-address; #Define options for pxelinux option space pxelinux; option pxelinux.magic code 208 = string; option pxelinux.configfile code 209 = text; option pxelinux.pathprefix code 210 = text; option pxelinux.reboottime code 211 = unsigned integer 32; site-option-space "pxelinux"; option pxelinux.magic f1:00:74:7e; option pxelinux.reboottime 30; #Class that determine the options for Etherboot 5.x requests class "Etherboot" { #if The vendor-class-identifier equal Etherboot-5.0 match if substring (option vendor-class-identifier, 0, 13) = "Etherboot-5.0"; # filename define the file retrieve by the client, there nbgrub # our tftp is chrooted so is just the path to the file filename "/etherboot/nbgrub"; #Used by etherboot to detect a valid pxe dhcp server option vendor-encapsulated-options 3c:09:45:74:68:65:72:62:6f:6f:74:ff; # Set the "vendor-class-identifier" field to "PXEClient" in dhcp answer # if this field is not set the pxe client will ignore the answer ! option vendor-class-identifier "Etherboot-5.0"; vendor-option-space PXE; option PXE.mtftp-ip 0.0.0.0; # IP of you TFTP server next-server IPADDR_TFTP; } # create the Class PXE class "PXE" { # if the "vendor-class-identifier" is set to "PXEClient" in the client dhcp request match if substring(option vendor-class-identifier, 0, 9) = "PXEClient"; filename "/X86PC/linux/linux.0"; option vendor-class-identifier "PXEClient"; vendor-option-space PXE; option PXE.mtftp-ip 0.0.0.0; next-server IPADDR_TFTP; } #host node20 { # hardware ethernet 00:40:CA:8C:B6:E9; # fixed-address node20; #} subnet NET.0 netmask 255.255.255.0 { option subnet-mask 255.255.255.0; option routers IPADDR_GW; default-lease-time 288000; max-lease-time 864000; option domain-name "guibland.com"; option domain-name-servers IPADDR_DNS; next-server IPADDR_TFTP; pool { range NET.30 NET.40; } } Setup a node as a golden node The rescue.sqfs file You need the rescue disk (wich contains the /ka directory), Just extract this file, and copy all directory in /mnt/ka. [root@guibpiv ~]# mkdir /mnt/ka [root@guibpiv ~]# cd /mnt/ka/ [root@guibpiv ka]# unsquashfs rescue.sqfs [root@guibpiv ka]# mv squashfs-root/* . [root@guibpiv ka]# ls bin/ dev/ etc/ ka/ lib/ modules/ proc/ sbin/ squashfs-root/ tmp/ usr/ var/ Go in the /mnt/ka/ka directory, and see all new files available. All those files are needed to do a KA duplication process. We will explain now the rule of each of them. You can modify all them, those files will be copied in the directory /tmp/stage2 of the client node of the duplication process (second step). ka-d.sh This is the master script to declare a node as a golden node. This script takes a lot of arguments. This script should be run on the host wich have the /mnt/ka directory. -h, --help : display this message -n num : specify the number of (destination) nodes -x dir : exclude directory -X sdb|sdc : exclude sdb for the replication -m drive : copy the master boot record (for windows) of this drive (not really tested yet) -M drive file : use 'file' as master boot record (must be 446 bytes long) for the specified drive -D partition : also copy partition 'partition' -p drive pdesc : use 'pdesc' file as partition scheme (see doc) for the specified drive -d delay : delay beteween the release of 2 clients (1/10 second) -r 'grub|lilo' : choose the bootloader (you can add mkinitrd options) ie: ka-d.sh -n 3 -p sda /tmp/desc -X 'sdb|sdc' -r 'grub --with=ata_piix --with=piix' replication.conf This file contains all variables needed by other scripts. It also tries to get information like IP address. fdisk_to_desc This script generate the description table of the hard drive disk in the /tmp/desc file. This file must follow some rules: one line per partition, with two fields : type of partition and size in megabytes. The type can be linux, swap, extended. Other types can be obtained by appending their hexadecimal number to 'type'. For example linux is the same as type83. The size is either a number of megabytes, or the keyword fill (to take all available space). The logical partitions must have the logical keyword. Do a man ka-d for more help. gen_modprobe_conf.pl This script creates a basic output like the content of the/etc/modprobe.conf file. Drawbacks this file must be updated for each new modules available in the kernel (based on the kernel/list_modules.pm file). ka-d-client The ka-d-client binary file is used to get stage2 with the KA method, and after get the whole system. The important argument is the -s session name. A KA can only connect to a specific session (getstage2, kainstall ...). The code source is available in the ka-deploy SRPM. ka-d-server The ka-d-server binary file is used to be a KA golden node server. Like the ka-d-client the session arguments is an important parameter (-s session_name). The session name will be getstage2 to retrieve the stage2 (after the PXE boot) and will be kainstall1 at duplication process step. If you want to do more than one duplication process of nodes at the same time, you should synchronize the ka_sesion name between the server and the client. The code source is available in the ka-deploy SRPM. ka_replication.sh Script launched on the KA client (after getting stage2 and probing modules), to do the full process of the Ka duplication. This script call other scripts to prepare the node (prepare_node.sh), configure the bootloader (make_initrd_grub or make_initrd_lilo). store_log.sh Basic script to store the log of the KA duplication process on an FTP server. Adjust to feet your need, and uncomment the line #store_log.sh in the /mnt/ka/ka/ka_replication.sh file. bootable_flag.sh Script to set bootable an HDD using fdisk. First arg must be the HDD device. make_initrd_grub Restore and reload the Grub bootloader in the /mnt/disk directory. It's a very basic script, and perhaps use the restore_bootloader of the Mandriva Linux Rescue should be a better idea. make_initrd_lilo Restore and reload the lilo bootloader in the /mnt/disk directory. Again it's a very basic script, perhaps we should use the restore_bootloader of the Mandriva Linux Rescue. prepare_node.sh This script remove in the futur system the old network's udev rules, old dhcp cache files, launch the script gen_modprobe_conf.pl to regenerate an up to date /etc/modprobe.conf in the new system, and launch the script to restore the bootloader. If you want to do more action on the installed, system, you can modify this script. send_status.pl Very basic perl script to open the port 12345, and paste the content of the /tmp/ka* file. It also permit the execution of commands on node, if user send a message from the golden node with the exec prefix. status_node.pl Script to connect to a client node, first arg must be the IP address of the node. You can run command on the node with the exec prefix. The golden node, KA server Now, it is time to build a description of the node partitions. You can use the script /mnt/ka/ka/fdisk_to_desc as root user, or your favorite text editor, you can write a file like this one: linux 3500 extended fill logical swap 500 logical linux fill This file describes your partition table and the sample above can be considered as a default one for a recommended installation. There is a 3.5GB / partition, a 500 MB swap partition, and /var fills the rest, of course you can adjust sizes accoding to your system. Type the following to start the ka replication server as root user on the golden node: [root@node40 ka]# ./ka-d.sh -n 1 -p sda /root/desc -X sdb -r "grub --with=jfs --with=ata_piix" takembr = desc = sda /root/desc + Mount points : /dev/sda5 / ext3 /dev/sda1 swap swap + Hard drives : sda + Reading partition table description for sda Added partition 1 : type 82 Added partition 5 : type 83 + Included mount points : / + Bootloader is: grub --with=jfs --with=ata_piix +++ Sending Stage2 +++ Compiled : Aug 23 2007 12:58:29 ARGS=+ka-d-server+-s+getstage2+-n+1+-e+(cd /mnt/ka; tar --create --one-file-system --sparse . )+ Server IP = 10.0.1.40 command = (cd /mnt/ka; tar --create --one-file-system --sparse . ) I want 1 clients Socket 4 on port 30765 on node40.guibland.com ready. Socket 5 on port 30764 on node40.guibland.com ready. ]]> -r "grub --with=jfs --with=ata_piix": use grub bootloader and --with=jfs --with=piix mkinitrd option in the chrooted system after the KA deploiement -n nb_nodes: specify how many nodes are clients -p sda desc: specify the name of the hdd -x /tmp: exclude /tmp directory -X sdb: exclude sdb hdd for the duplication Now the golden node is waiting for clients nodes to start replication. KA client node PXE server (kamethod) We have to configure the PXE to boot by default on kamethod. To do this just edit /var/lib/tftpboot/X86PC/linux/pxelinux.cfg/default and set DEFAULT to kamethod: DEFAULT kamethod So, next time a node boots, the PXE server will force the node to boot using the kamethod entry. Stage1 KA method, node waiting stage2 Now, you boot all remaining nodes. The replication process will start once all nodes are up and waiting on the KA screen. If the nodes can't reach the golden node, running the KA server the message Can't reach a valid KA server will appear. Each node will try five times to reach the KA server, after that the node will reboot. As the node boots on kamethod, it will retry until it finds it. Stage2, the duplication process Once all the nodes have found the KA server, the first duplication process will start. This step duplicates the stage2 from the /mnt/ka directory of the golden node, in the client's nodes memory (/dev/ram3 formated as ext2). Then, nodes chroot their memories (the /tmp/stage2 directory), and launch the drvinst command from the stage2, to probe all needed their modules (drivers). Then, the second step of the duplication starts. The duplication process will clone your drives following the description you have made (/tmp/desc of the golden node). Nodes will rewrite their partition table, then format their filesystems (ReiserFs, XFS, ext2/3/4, JFS). All new partitions will be mounted in the /mnt/disk directory. Then, the drive duplication process will begin. On a fast Ethernet switch you can reach speeds of 10MBytes/sec. Prepare the node At the end of the duplication process, each node will chroot its partitions and rebuild its /boot/initrd.img, and /etc/modprobe.conf files. This step ensures that your node will reboot using its potential SCSI drives and adjusting its network card driver. Before rebooting, each node reinstalls lilo/grub. All your node are now ready, and are clone of master node. PXE server to local boot Don't forget to change the default PXE boot to local so node after replication will boot localy. full log of a KA duplication Golden node side KA client side Just launch /mnt/ka/ka/status_node.pl IPADD to get log of the KA client. ------| Ka |---- Install starting... 10.0.1.35> Current session is -s kainstall1 10.0.1.35> Receiving partitions information...OK 10.0.1.35> Cleaning hard drive... 10.0.1.35> ==> /tmp/kacmd <== 10.0.1.35> Starting log server.. 10.0.1.35> 10.0.1.35> ==> /tmp/ka_log-10.0.1.35-20071024-10h32 <== 10.0.1.35> OK 10.0.1.35> Device contains neither a valid DOS partition table, nor Sun, SGI or OSF disklabel 10.0.1.35> Building a new DOS disklabel with disk identifier 0x59be1427. 10.0.1.35> Changes will remain in memory only, until you decide to write them. 10.0.1.35> After that, of course, the previous content won't be recoverable. 10.0.1.35> 10.0.1.35> 10.0.1.35> The number of cylinders for this disk is set to 1116. 10.0.1.35> There is nothing wrong with that, but this is larger than 1024, 10.0.1.35> and could in certain setups cause problems with: 10.0.1.35> 1) software that runs at boot time (e.g., old versions of LILO) 10.0.1.35> 2) booting and partitioning software from other OSs 10.0.1.35> (e.g., DOS FDISK, OS/2 FDISK) 10.0.1.35> Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite) 10.0.1.35> 10.0.1.35> Command (m for help): The partition table has been altered! 10.0.1.35> 10.0.1.35> Calling ioctl() to re-read partition table. 10.0.1.35> Syncing disks. 10.0.1.35> Writing partition table for sda using fdisk...OK 10.0.1.35> Formatting /dev/sda5 as ext3...OK 10.0.1.35> Formatting /dev/sda1 as swap...OK 10.0.1.35> - Mounting /dev/sda5 as /mnt/disk/ ......OK 10.0.1.35> ++++++++++++++++++++++++++ 10.0.1.35> rootfs on / type rootfs (rw) 10.0.1.35> /proc on /proc type proc (rw) 10.0.1.35> none on /sys type sysfs (rw) 10.0.1.35> none on /proc/bus/usb type usbfs (rw) 10.0.1.35> /dev/ram3 on /tmp/stage2 type ext2 (rw) 10.0.1.35> /dev/sda5 on /mnt/disk type ext3 (rw,data=ordered) 10.0.1.35> ++++++++++++++++++++++++++ 10.0.1.35> Linux copy is about to start 10.0.1.35> Server IP is 10.0.1.40 10.0.1.35> Buffers names :pipe Total data received = 620 Megs (11.222 Mbytes/sec); BUF :0M End of data flow 10.0.1.35> Flushing buffers 10.0.1.35> Total data received = 627 Megs, in 434960 packets 10.0.1.35> Elapsed time = 128.482 seconds, throughput = 4.886 Mbytes/second 10.0.1.35> Syncing disks...OK 10.0.1.35> Linux copy done. 10.0.1.35> Creating excluded directories 10.0.1.35> - bootloader is grub --with=jfs --with=ata_piix (user choice and options) 10.0.1.35> - Removing duplicated dhcp cache 10.0.1.35> - Writing modprobe.conf 10.0.1.35> ******************** 10.0.1.35> install scsi_hostadapter /sbin/modprobe aic7xxx; /sbin/modprobe ata_piix; /bin/true 10.0.1.35> alias eth0 eepro100 10.0.1.35> alias eth1 eepro100 10.0.1.35> ******************** 10.0.1.35> - Remove ude network rules 10.0.1.35> removed `/mnt/disk/etc/udev/rules.d/61-net_config.rules' 10.0.1.35> - Running mkinitrd 10.0.1.35> Looking for default grub menu 10.0.1.35> - erase old initrd.img link 10.0.1.35> removed `/mnt/disk/boot/initrd.img' 10.0.1.35> initrd will be : /boot/initrd-2.6.22.9-desktop-1mdv.img 10.0.1.35> running: chroot /mnt/disk /sbin/mkinitrd -v -f --with=jfs /boot/initrd-2.6.22.9-desktop-1mdv.img 2.6.22.9-desktop-1mdv 10.0.1.35> Looking for deps of module aic7xxx 10.0.1.35> scsi_transport_spi scsi_mod 10.0.1.35> Looking for deps of module scsi_transport_spi 10.0.1.35> scsi_mod 10.0.1.35> Looking for deps of module scsi_mod 10.0.1.35> skip dups 10.0.1.35> Looking for deps of module sd_mod 10.0.1.35> scsi_mod 10.0.1.35> Looking for deps of module scsi_wait_scan 10.0.1.35> scsi_mod 10.0.1.35> Looking for deps of module ext3 10.0.1.35> jbd 10.0.1.35> Looking for deps of module jbd 10.0.1.35> Looking for deps of module jfs 10.0.1.35> Using modules: /lib/modules/2.6.22.9-desktop-1mdv/kernel/drivers/scsi/scsi_mod.ko /lib/modules/2.6.22.9-desktop-1mdv/kernel/drivers/scsi/scsi_transport_spi.ko /lib/modules/2.6.22.9-desktop-1mdv/kernel/drivers/scsi/aic7xxx/aic7xxx.ko /lib/modules/2.6.22.9-desktop-1mdv/kernel/drivers/scsi/sd_mod.ko /lib/modules/2.6.22.9-desktop-1mdv/kernel/drivers/scsi/scsi_wait_scan.ko /lib/modules/2.6.22.9-desktop-1mdv/kernel/fs/jbd/jbd.ko /lib/modules/2.6.22.9-desktop-1mdv/kernel/fs/ext3/ext3.ko /lib/modules/2.6.22.9-desktop-1mdv/kernel/fs/jfs/jfs.ko 10.0.1.35> Using /tmp as temporary directory. 10.0.1.35> /sbin/nash -> /tmp/initrd.tG1408/bin/nash 10.0.1.35> /lib/modules/2.6.22.9-desktop-1mdv/kernel/drivers/scsi/scsi_mod.ko.gz: 60.6% 10.0.1.35> /lib/modules/2.6.22.9-desktop-1mdv/kernel/drivers/scsi/scsi_transport_spi.ko.gz: 63.1% 10.0.1.35> /lib/modules/2.6.22.9-desktop-1mdv/kernel/drivers/scsi/aic7xxx/aic7xxx.ko.gz: 61.4% 10.0.1.35> /lib/modules/2.6.22.9-desktop-1mdv/kernel/drivers/scsi/sd_mod.ko.gz: 60.2% 10.0.1.35> /lib/modules/2.6.22.9-desktop-1mdv/kernel/drivers/scsi/scsi_wait_scan.ko.gz: 77.3% 10.0.1.35> /lib/modules/2.6.22.9-desktop-1mdv/kernel/fs/jbd/jbd.ko.gz: 60.5% 10.0.1.35> /lib/modules/2.6.22.9-desktop-1mdv/kernel/fs/ext3/ext3.ko.gz: 53.9% 10.0.1.35> /lib/modules/2.6.22.9-desktop-1mdv/kernel/fs/jfs/jfs.ko.gz: 51.4% 10.0.1.35> Loading module scsi_mod.ko 10.0.1.35> Loading module scsi_transport_spi.ko 10.0.1.35> Loading module aic7xxx.ko 10.0.1.35> Loading module sd_mod.ko 10.0.1.35> Loading module scsi_wait_scan.ko 10.0.1.35> Loading module jbd.ko 10.0.1.35> Loading module ext3.ko 10.0.1.35> Loading module jfs.ko 10.0.1.35> /usr/sbin/resume -> /tmp/initrd.tG1408/bin 10.0.1.35> Contents of RCFILE: 10.0.1.35> #!/bin/nash 10.0.1.35> 10.0.1.35> echo "Loading scsi_mod.ko module" 10.0.1.35> insmod /lib/scsi_mod.ko 10.0.1.35> echo "Loading scsi_transport_spi.ko module" 10.0.1.35> insmod /lib/scsi_transport_spi.ko 10.0.1.35> echo "Loading aic7xxx.ko module" 10.0.1.35> insmod /lib/aic7xxx.ko 10.0.1.35> echo "Loading sd_mod.ko module" 10.0.1.35> insmod /lib/sd_mod.ko 10.0.1.35> echo "Loading scsi_wait_scan.ko module" 10.0.1.35> insmod /lib/scsi_wait_scan.ko 10.0.1.35> echo "Loading jbd.ko module" 10.0.1.35> insmod /lib/jbd.ko 10.0.1.35> echo "Loading ext3.ko module" 10.0.1.35> insmod /lib/ext3.ko 10.0.1.35> echo "Loading jfs.ko module" 10.0.1.35> insmod /lib/jfs.ko 10.0.1.35> echo Mounting /proc filesystem 10.0.1.35> mount -t proc /proc /proc 10.0.1.35> echo Mounting sysfs 10.0.1.35> mount -t sysfs none /sys 10.0.1.35> echo Creating device files 10.0.1.35> mountdev size=32M,mode=0755 10.0.1.35> mkdevices /dev 10.0.1.35> echo Creating root device 10.0.1.35> mkrootdev /dev/root 10.0.1.35> resume 10.0.1.35> echo 1 > /sys/power/suspend2/do_resume 10.0.1.35> echo 1 > /sys/power/tuxonice/do_resume 10.0.1.35> echo Mounting root filesystem /dev/root with flags relatime 10.0.1.35> mount -o relatime --ro -t ext3 /dev/root /sysroot 10.0.1.35> echo Switching to new root 10.0.1.35> switchroot --movedev /sysroot 10.0.1.35> echo Initrd finished 10.0.1.35> First drive will be: /dev/sda 10.0.1.35> Installation finished. No error reported. 10.0.1.35> This is the contents of the device map /boot/grub/device.map. 10.0.1.35> Check if this is correct or not. If any of the lines is incorrect, 10.0.1.35> fix it and re-run the script `grub-install'. 10.0.1.35> 10.0.1.35> (hd0) /dev/sda 10.0.1.35> (hd1) /dev/sdb 10.0.1.35> umount: /mnt/disk/dev: not mounted 10.0.1.35> Umounting /dev/sda5...OK 10.0.1.35> AUTH not understood 10.0.1.35> Local directory now /tmp exec lsmod 10.0.1.35> 10.0.1.35> 10.0.1.35> exec lsmod 10.0.1.35> Module Size Used by 10.0.1.35> aic7xxx 167992 0 10.0.1.35> scsi_transport_spi 22432 1 aic7xxx 10.0.1.35> ata_piix 12228 0 10.0.1.35> libata 109424 1 ata_piix 10.0.1.35> sr_mod 15044 0 10.0.1.35> sd_mod 25888 0 10.0.1.35> scsi_mod 124908 5 aic7xxx,scsi_transport_spi,libata,sr_mod,sd_mod 10.0.1.35> loop 14212 0 10.0.1.35> jfs 176708 0 10.0.1.35> xfs 528088 0 10.0.1.35> reiserfs 247908 0 10.0.1.35> ext3 118824 0 10.0.1.35> jbd 50184 1 ext3 10.0.1.35> vfat 10816 0 10.0.1.35> nls_iso8859_1 4672 0 10.0.1.35> nls_cp437 6304 0 10.0.1.35> fat 45980 1 vfat 10.0.1.35> isofs 31452 0 10.0.1.35> piix 9060 0 [permanent] 10.0.1.35> ide_cd 35488 0 10.0.1.35> ide_disk 14496 0 10.0.1.35> ide_core 99396 3 piix,ide_cd,ide_disk 10.0.1.35> af_packet 17960 0 10.0.1.35> eepro100 28432 0 10.0.1.35> mii 5376 1 eepro100 10.0.1.35> usbkbd 6304 0 10.0.1.35> uhci_hcd 22736 0 10.0.1.35> usbcore 113928 3 usbkbd,uhci_hcd ]]>